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CHAPTER ONE: BUSINESS MODEL 

Introduction 

Globally, buildings are responsible for 40% of energy consumption and a third of greenhouse gas 

emissions [1] and electricity consumption [2]. In the U.S., the situation is no different as building 

sector energy consumption also stands at 40%, with a similar proportion of carbon footprint (39%) 

by same [3]. This includes 73% of electricity use and peaks at 80% when demand rises [4]. As 

developing countries improve access to energy and tropical countries grow in their need for air-

conditioning, amid rapid urbanization and increased ownership and use of electrical appliances, 

global energy demand from buildings is expected to rise significantly [2]. 

 

 

Figure 1: Global energy use and energy-related CO2 emissions by sector, 2020 [2] 

Even as governments and government sectors work to enact policies to increase the minimum 

performance standards of buildings and the deployment of renewable energy in buildings as part 



of decarbonization efforts, less than 1% of U.S. buildings are improved each year [5]. Also, there 

is a substantial unserved market for building energy efficiency, especially in the residential and 

small commercial (less than 50,000 ft2) building sectors [6]. As a result, buildings are still not on 

track to achieve carbon-neutral emissions by 2050 [2]. One of the ways to meet this target is for 

all new buildings and 20% of the existing building stock to be zero-carbon-ready no later than 

2030 [2]. Also, building sector energy intensity would need to reduce five times more rapidly over 

the next decade than in the past five years. Meaning, energy consumption per ten square feet must 

be 45% less in 2030 than the 2020 baseline. 

Among the many recommendations that the International Energy Agency (IEA) proposes as 

measures to reduce building sector energy consumption and greenhouse gas emissions, technology 

products that provide consumers with information to help them make informed decisions about 

energy efficiency stand out. Also, technology awards such as the Global Cooling Prize [7] that 

reward leading-edge innovation efforts to increase efficiency and reduce costs are highlighted [2]. 

In the U.S., the Department of Energy’s (DOE) Building Technology Office’s (BTO) long-term 

goal is to reduce the energy use intensity (EUI) of U.S. buildings by 50% compared to the 2010 

baseline. The short-term goal is to minimize building EUI by 30% by 2030 [8]. The vision of the 

Office of Electricity is to harness innovation to make the North American energy system more 

robust, more resilient, and reliable. [9]. 

 

Research Goal 

Domestic (U.S.) and global building energy efficiency goals underscore the vital role of 

technology and innovation. One of such innovative and technology-driven solutions is an Urban-

Scale Building Energy Modeling (UBEM) software technology called AutoBEM (Automatic 

Building Energy Modeling), which employs high computational algorithms and has been (or can 

be) used to generate and simulate almost all 125 million buildings of the U.S. This section 

investigates the market needs of UBEM, using AutoBEM as a case study, summarizes 

characteristics of a potential solution via a business model canvas, and seeks to quantify the 

potential for how building-specific energy analysis might best enable larger-scale investments in 

building energy efficiency. 

Methodology 

The data collection methods included both interviews and a literature review. One professional 

from Ameresco, an Energy Service Company (ESCO), two professionals from the Electricity 

Power Board (EPB) of Chattanooga, and an Urban Planner were interviewed. A sample of the 

questions used in the interview can be found in Appendix 1 on page 27. 

Developing the Business Model 

Assessing Market Needs 

The insight gained from the interview with Ameresco suggests a shift of focus from individual 

buildings to a collection of facilities, including higher education and municipalities. This is 



because ESCOs appear to be having issues with the business model of providing energy efficiency 

services to customers and being paid from the cost savings that come from implementing Energy 

Conservation Measures (ECMs). Some of the reasons given for this include (i) customers are tired 

of that business model, (ii) customers do not want to incur debt, (iii) customers feel energy savings 

estimates are not dependable, and (iv) customers think they can do it themselves. Beyond this, 

traditional physics-based building simulation requires so many inputs and person-hours, which, 

when scaled to urban levels, even for higher education and municipalities, could become 

prohibitively laborious using the traditional approach. It is for this reason that AutoBEM has 

become valuable. 

For EPB Chattanooga and other utilities, AutoBEM may help segment customers based on their 

consumption profile. The actual functionality that could prove more valuable, it seems, is one that 

allows utilities to dynamically track the consumption profile for customers even as their usage 

behavior changes or they relocate. Moreover, utilities are looking for ways to prioritize their 

investments based on demographic data, disaggregate loads and be able to define energy 

consumption outliers and weed them out. Furthermore, for the application to become useful for 

non-data-scientists or non-computer-scientists, it needs to have a front end. Indeed, AutoBEM can 

meet some of the utility’s requirements with ongoing work to add more functionalities. 

The last interview was with an urban planner with experience in both public sector and private-

sector consulting. While this interview did not indicate much of a good fit between AutoBEM and 

urban planning requirements, it was interesting that the information such as cartographic data for 

zoning, elevation, and other building information from the Tax Assessor’s office may be helpful 

for land use law firms. Urban planners, however, will find data on tree coverage and building 

coverage that is separated into roads and sidewalks more helpful in their work. 

 

Market Potential 

Pre-covid annual spending on energy in the U.S. was around US$1.3 trillion, with retail electricity 

accounting for nearly 32% (US$403 billion). By sector, residential buildings were the second-

largest energy spenders (21% of the U.S. total), having surpassed the industrial sector since 

2012[10].  



 

Figure 2: Annual Spending on Energy in the U.S. [10] 

 

 

Figure 3: U.S. Annual Spending on Energy by Source[10] 

While the global energy as a service (EaaS) market size is estimated to be US$54.5 billion in 2020 

and is projected to double by 2030 to US$112.7 billion [11], the global market for energy-efficient 

devices is forecasted to more than double and reach US$1,771.70 billion by 2028 compared to 

US$690.52 billion in 2020, with a compound annual growth rate (CAGR) of 12.5% [12]. Of the 

2022 market share, North America accounted for 40.2% by region and the residential application 



segment has the largest share of 48.0%. The residential application segment is projected to increase 

its market share further as more homeowners adopt smart meters and other home energy 

management systems, with support from government initiatives toward green buildings guidelines 

or Energy Conservation Building Code (ECBC). The device type projected to lead the growth is 

consumer electronics and appliances with a CAGR of 12.8%, followed by smart lighting. 

Generally, growth in the global energy efficiency market will be fueled by an increasing need to 

be energy efficient and growing concerns about the effects of climate change. Another factor is 

the decarbonizing efforts causing firms to invest more in renewable energy resources and 

technologies. Also, increasing efforts in research and development to make buildings more energy-

efficient and produce energy-efficient devices, coupled with rapid urbanization and rising 

consumer purchasing power, could contribute to the growth of the energy efficiency market [12]. 

The energy management software is also a big player in the energy efficiency market, with the 

global energy-management software market size estimated to rise from US$33.2 billion in 2020 

to US$69.3 billion by 2027. 

National, city and local authorities are the major investors in energy efficiency, especially in 

buildings and transportation, given their large stock of buildings and fleet [13]. 

 

Hindrances to Market Adoption 

The major limitations that could hinder growth in this sector are the lack of awareness and 

information about energy efficiency and energy-efficient devices and the often high initial cost of 

some energy efficiency measures [12]. In UBEM, the lack of high computational resources and 

lack of access to data or issues of intellectual property surrounding the data could serve as a major 

impediment. Another reason businesses give for not investing in building energy efficiency is that 

energy-efficient technologies are expensive, risky, and hard to operate and maintain. Also, 

property or facility managers do not have the time to implement energy efficiency measures or do 

not have the expertise to do so. The difficulty in accessing the information on building energy 

efficiency or the lack thereof is another roadblock. A significant limitation is the lack of finance 

or the colossal capital expenditure requirement for some energy conservation measures [14]. 

 

Value Proposition for Major Stakeholders 

AutoBEM addresses these concerns by providing independently verifiable energy models 

generated using high-performance computing resources to save both cost and time. Given that lack 

of trust is a significant concern often raised by customers concerning ESCOs, the models generated 

by AutoBEM could provide a basis for either an ESCO or a consumer to initiate an energy audit 

request or service. Generally, the models could provide engineers, architects, and energy managers 

with the resources needed to set specific energy-efficiency goals for their clients. It can also help 

building projects meet LEED (Leadership in Energy and Environmental Design) requirements or 

obtain LEED certification and estimate buildings’ future energy usage and cost [15]. 



For the main customer targets of UBEM – Utilities and ESCOs – AutoBEM offers a variety of 

values. The ability of AutoBEM to reach beyond the electric meter and independently investigate 

a building’s energy use is one of significant value. Utilities can use the models to map out 

customers (or geographical areas) based on their energy consumption and use that to formulate 

peak rate structure. As a result of this mapping or knowledge of peak demand, utilities can be 

initiative-taking in designing products and services to manage demand through smart appliances 

such as smart thermostats and water heaters or grid stability measures such as voltage and 

frequency management. Also, utilities can apply the right emission conversion factor to estimate 

the emissions contributed by each building within their service area. This will help them put 

measures in place to meet emissions targets or comply with emissions regulations. Moreover, 

utilities can use the models to plan energy efficiency programs, especially for high-energy users. 

Furthermore, these models can be used to educate customers on their energy usage and what 

measures they could take to reduce their energy consumption [16]. 

 

UBEM as an Enabler for Investment in Energy Efficiency 

UBEM tools hold many values, but getting the tool to where it is needed to make a real impact is 

quite another thing. There have been many measures to encourage investment in energy-efficient 

technologies, including the electrical appliances energy efficiency rating and labeling [17]. The 

American Council for an Energy-Efficient Economy (ACEEE) suggests ten ways to increase 

energy efficiency investments [14]. One of the suggestions that aligns more with UBEM is to 

provide a building performance benchmarking analysis that can help energy consumers with 

below-average performance easily identify themselves and be stirred toward improvement. The 

building-specific energy analysis that gets to the consumer must highlight the things they care 

about, such as their contribution to climate change in terms of carbon emissions, measured on a 

micro-scale and quantified in simple, relatable metrics such as bags of coal, volume reduction in 

water supply, or reduced agricultural yield. Also, UBEM developers could partner with utilities to 

provide energy consumption and efficiency analysis on a monthly or real-time basis using smart 

energy metering and monitoring devices. This could well serve residential buildings, which happen 

to be the most underserved segment of the building sector as far as energy efficiency services are 

concerned. There is already a business case for this. For example, Pacific Gas and Electric (PG&E) 

power company is experimenting with a pay-for-performance weatherization program whereby 

the utility will reimburse contractors for the energy savings they achieve [14]. Another way that 

investment can pour into building energy efficiency is when investors and financing firms have 

reliable data on potential energy savings to support their decisions. AutoBEM could be an 

independent energy efficiency data source for such purposes. 

 

Go-to-market Strategy 

As UBEM is still a budding field, getting AutoBEM to the market will require more research and 

publications. Another way is to highlight what AutoBEM can do at industrial and academic 

conferences and exhibitions. Also, the product will need to be assessed with specific markets to 

understand its use cases in those markets as well as fill useful functionality gaps that might be 



missing but required. The data output for AutoBEM would be available through web services and 

APIs and interactive 3D visualizations such as CesiumJS. 

Partnerships for Success 

There are no known competitors for this endeavor. The intent is not so much for profitmaking as 

stimulating a nationwide adoption of and investment into building energy efficiency. The goal of 

this market assessment investigation could lead to that purpose. Therefore, if, through this report, 

utilities and ESCOs as partners, rather than competitors, would consider how to leverage 

AutoBEM or UBEM in general to achieve more significant investment in building energy 

efficiency, the purpose of this assessment would be achieved. Other partners relevant to this 

venture include data providers and I.P. attorneys to help deal with I.P. concerns regarding the data 

used as input for AutoBEM. 

Funding Needs 

The primary funding needs for AutoBEM will be for continued research and development to refine 

the models and make them more accessible and meaningful to those who are not experts in the 

field. Funding may also be required to close context-specific gaps in data, models and simulation 

results. The key resources to operate and maintain AutoBEM include software developers, data 

scientists, building technologists, GIS experts, and high-performance computers. 

 

Figure 4: Summary of Business Model Canvas for AutoBEM [18] 

                        

                     
              
                                        

            
            

     
          

        
   

            
            
         
     

                         
         

                    

                            

                           
                         
                            
                         

                           
                   
          

                               
                             
                        
        

                              
                                
        

                              

        
       
        

               
                 

                 
         

                  

                     
            
                
                     
           

                           
           

                      

     
            
         

             

                   
               

                      
           

               
             

                                                                                   

                     

                             

                                                                                                  
                                 

                          



CHAPTER TWO: DATA SOURCES, COMPUTATIONAL 

METHODS AND SCALABLE COMPUTING APPROACH 

Data sources 

Generating building models and simulating energy use of buildings are heavily data-dependent 

processes that require lots of building data by the hundreds and well into the thousands, depending 

on the building type. The table below shows the number of building descriptors for different 

building types that were modified for an Urban-Scale Energy Modeling (UBEM). 

Table 1: Typical Building Descriptors for Building Energy Modeling[19] 

 

Building energy modelers usually rely on the information on climate, building physics, 

construction materials, equipment components, shading, and occupancy to better characterize a 

building [20]. While it is possible to obtain almost all the building information input for an 

individual or a few clusters of buildings, it is highly impractical to get such a high level of details 

for building energy modeling that involves large stock of buildings at the urban scale. For modeling 

at the urban scales, such as at the state or national level, where most of the building information is 

unknown, one of the building information useful to generate energy models of buildings includes 

building footprint. Other information are height, the number of stories, window-to-wall ratio 

(WWR), building type, and building vintage [21], [22]. By applying heuristics, suitable input data 

can be generated for some building properties, such as building type [21]. Also, values from 

building prototypes such as those provided by the Department of Energy (DOE) [24] can be used 

to create building models that require minimal input [25]. For building footprints, Microsoft’s 

OpenStreetMap uses deep learning, and image processing algorithms to provide an open, free, 

downloadable computer-generated footprint of over 129 million U.S. buildings and those of other 

regions [26]. Representative weather data for the energy simulation can be obtained from 

OpenStudio or the Office of Energy Efficiency and Renewable Energy website [24]. While the 

information on building height is more difficult to obtain, Light Detection and Ranging (LiDAR) 

technology makes it possible to have that information, which certain U.S. counties and regions 

utilize to make building height data publicly available. But building height information obtained 

by such means is not without uncertainty and challenges because of the resolution. Height data 

obtained at low resolution can often be confused with proximate objects with substantial height. It 

is essential, therefore, that height data is acquired at a higher resolution. 



 

Figure 5: Major Components of Urban Building Energy Modeling[22] 

Government agencies that hold valuable information on buildings are important data sources for 

building modeling. In the U.S., the General Services Administration (GSA) is a source for building 

footprint, the Department of Planning for land use data, the Tax Assessor’s Offices for assessor 

records, including building vintage, and the Departments of Environment for energy disclosure 

[23]. In the U.K., a UBEM platform called SimStock, built on EnergyPlus, was developed for the 

automatic generation of detailed simulation models to predict the energy and environmental 

performance; another software called 3DStock was created to automatically generate a detailed 

built form from publicly available national datasets. The publicly available building data that fed 

the 3DStock software included floor space use type from the Valuation Office Agency (VOA), 

building addresses from the Ordinance Survey, measured energy data from the Department for 

Business, Energy & Industrial Strategy, as well as land parcels and sites from the Land Registry  

[20]. 

The table below summarizes six general data types that are employed in UBEM: 

Table 2: Data types and description for Urban-Scale Building Energy  Modeling[16] 

Data Type Data Description 

Imagery (satellite, 

airborne) 

These are images taken by satellites and airborne cameras, and 

they cover extensive urban areas from which building footprints 

can be detected and extracted. 

Street-level Imagery These are images that contain a collection of photographs that can 

be used for direction search and navigation 

Cartographic data These are databases that include different geographic data layers 

used for mapping and GIS analysis. The main components of a 

cartographic database are the x-y coordinates that define a 

geographic area [27]. 

Elevation data This consists of elevation measurements obtained from LiDAR or 

computationally-derived models used to detect buildings at high 

spatial resolution and low resolutions. 

Building information 

databases 

This information can be obtained from the U.S. tax assessors' 

database. Depending on the county, the data from the tax 



assessor’s office may not be digitally available or may be 

available in an entirely different format from other counties. 

3D building model 

databases 

This provides 3D geometry of individual buildings over wide 

areas. 
 

While building prototypes and government agencies serve as valuable data sources for direct use 

in UBEM, they do not hold data for all the building descriptors needed for modeling. Therefore, 

plausible assumptions must be part of the data sources where actual data is unavailable. For 

example, knowing the building type can help estimate the floor-to-floor height, which can be 

combined with the actual or estimated height of the building and the number of floors. Again, 

information on building type also helps determine the WWR, occupancy schedule, and HVAC 

type. Furthermore, building vintage can inform the kind of insulation and infiltration to use in the 

model. While the information on building vintage can be obtained from the Tax Assessor’s offices, 

recent research shows how annual maps of Global Artificial Impervious Areas (GAIA) from 1985 

to 2018 could be used to estimate the vintages of several tens of millions of buildings [28]. No 

combination of these data sources is robust enough to describe the building accurately, but the aim 

is that aggregating these data sources from actual, estimated and assumed information would 

provide a representative model that is as close to the actual as possible. Since this data is used to 

classify buildings, it is imperative to get them right as some building misclassifications could result 

in energy use of ten times more or less. Where an actual building energy use exists from a utility 

or measured data, prototypical models of each building category could be compared against actual 

energy use to assess which ones fit best. This type of benchmarking provides a better representative 

model for building type, if not for building energy use [29]. 

Previous work performed to investigate the data sources for UBEM identified 37 data sources. 

Below is a summary of these data sources and their characteristics [30]. 

 Data type Source Comments 

1 Street view image Google A free service, downloadable through an API 

and covers the entire U.S.; can be used to map 

out the height and window-to-wall (WWR) of 

buildings as well as building material properties 

2 Open map data OpenStreetMap This is free, derived data that provides shapefiles 

of buildings from which building footprints, 

road network, buildings, and parking lots can be 

mapped out 

3 Satellite image DigitalGlobe A paid service that provides satellite imagery 

from which building footprint, land covers, and 

their material properties can be mapped out 

4 Aerial image DigitalGlobe A paid service that provides aerial view images 

from which building footprint, land covers, and 

their material properties can be mapped out 

5 Image Pictometry 

International 

Corporation 

A paid service that provides reports including 

high-resolution aerial images and 3D diagrams 



from which 3D building models and building 

exterior materials can be mapped out 

6 Ground elevation 

data 

U.S. 

Geological 

Survey 

A free service that provides main floor ground 

and road surface elevation that covers the entire 

U.S. 

7 Street view image Mapillary A free service that provides crowdsourced, 

single street view photos from which road 

pavement materials can be mapped out 

8 Remote sensing 

images 

U.S. 

Geological 

Survey 

A largely free dataset that provides remote 

sensing imageries from which building 

footprint, land covers, and their material 

properties can be mapped out 

9 Imagery and 

terrain 

Cesium Provides an interactive, visualizable 3D 

platform that is built on JavaScript and 

HTML/CSS together with the codes from which 

building footprints and height can be mapped 

out 

10 Land cover image Multi-

Resolution 

Land 

Characteristics 

Consortium 

Provides free, land cover information for the 

whole of the U.S. from which building footprint 

can be obtained 

11 Shapefiles, 

Geodatabase 

U.S. 

Geological 

Survey 

Provides a free database of geographic 

information on physical structures that includes 

name, function and location, among others. 

From these, the building footprint can be 

mapped out. 

12 Vector and raster 

images 

Volunteers and 

NACIS 

Provides free cultural and physical vector files 

from which physical properties can be 

segmented 

13 Map images NASA Free map data that provides rural-urban 

mapping, settlement and population 

14 Topographic 

images 

ASU1, SDSC2, 

NSF3 

Provides free topographical information, 

including raw point cloud data from which 

building heights could be extracted 

15 GIS data UNEP4 A free GIS database that provides visualizations 

of socio-economic variables, accessible in 

multiple formats through web services 

16 GIS US Geological 

Survey 

Free digital evaluation maps from which 

building height could be extracted 

 
1 Arizona State University 
2 San Diego Supercomputer Center 
3 National Science Foundation 
4 United Nations Environmental Program 



17 GIS City of 

Knoxville 

Free local GIS information for Knox County, 

Tennessee, suitable for zoning, land use and 

planning 

18 Elevation data City of 

Knoxville 

Local GIS information for Knox County, 

Tennessee, suitable for building height 

extraction 

19 Building 

information 

Zillow A database of building information, including 

year, age, size and sometimes HVAC systems of 

more than 100 million buildings (primarily 

residential buildings), accessible through API 

20 Geodatabase, 

shapefiles 

U.S. 

Geological 

Survey 

Free transportation data consisting of roads, 

airports, railroads and other features 

21 Orthoimagery US Geological 

Survey 

Free downloadable high-resolution aerial 

images that combine attributes of an aerial 

photograph with the spatial accuracy and 

reliability of a planimetric map. (“Imagery | U.S. 

Geological Survey”) Can provide building 

footprint and materials. 

22 Various data 

types 

ESRI ArcGIS data is a subscription-based platform 

that provides high-resolution imagery, base 

maps, multispectral, historical maps, and 

boundaries from which building footprint, 

materials and sizes could be extracted. 

23 Various data 

types 

ESRI Another platform called ArcGIS 3D cities 

employs Pictometry to produce the most 

detailed and realistic imagery-texture 3D 

building models as true representations of the as-

built conditions in 3D GIS projects for planning, 

facility management, and public engagement. 

24 3D Model 

(SketchUp) 

Trimble Provides a wide array of different 3D models 

from which building footprints, material, sizes, 

windows, and geometry could be extracted. 

25 3D buildings 

(GeoJSON) 

OpenStreetMap Provides free, wide array of different 3D models 

from which building footprint, sizes, and 

geometry could be extracted 

26 Imagery, 

shapefiles, 

DEMS, 

orthoimagery 

State 

Clearinghouse 

Provides free GIS data of each state from which 

building footprints, sizes and geometry could be 

extracted. 

27 Geodatabase Homeland 

security 

infrastructure 

program 

(HSIP) 

Provides various datasets related to energy, 

water supply, finance, and education. (Not 

publicly available) 



28 LiDAR5 NGA LiDAR data for all the urban areas in the 

contiguous USA from which building footprint 

and height could be extracted 
 

Specific algorithms are written to get more data beyond what is often available. One of such 

algorithms is for building height estimation. This method involves using building footprints on 2D 

maps and Google Street view images to estimate building height. Another method called 

factorization-based texture segmentation is used to partition an image into homogeneous regions, 

distinct from local neighbors and visually meaningful. The goal is to develop an approach to 

produce meaningful segmentation results efficiently. An application of this method is 

neighborhood mapping, where aerial images are used to map different socio-economic 

neighborhoods based on distinct texture appearances with results close to those from human 

analysts. Another application of texture segmentation is in roadbed extraction from high-resolution 

aerial images. An algorithm also uses LiDAR data to estimate solar radiation on urban structures 

for different applications, including solar photovoltaics and road de-icing. One area of need is the 

ability to evaluate building counts in aerial images. An attempt to solve this problem is through 

machine learning algorithms to train classifiers that identify line segments corresponding to 

building edges and observing the relationship (strong correlation) between the number of buildings 

and the number of lines for similar building types [30]. 

A widespread tool for generating building models is OpenStudio which can provide model output 

as an OpenStudio Model in .OSM format or EnergyPlus model in .IDF (Input Data File) format or 

both. These models can then be simulated (or run) on EnergyPlus to obtain energy consumption 

information. While traditional building energy modeling and simulation utilizing OpenStudio and 

EnergyPlus have often been performed on single buildings to a few clusters of buildings on 

personal laptops and desktop computers, UBEM requires that the modeling and simulation 

processes be integrated and streamlined in an automated workflow and run on High-Performance 

Computing (HPC) resources in a scalable manner. The following two sections highlight the 

computational methods available for UBEM and the scalable computing approach employed in a 

real-world UBEM project. 

 

Computation Methods 

The computational methods employed in generating building energy models and simulating 

building energy use at the urban scale are varied and many. Some of the computational methods 

applied include specific Artificial Intelligence (A.I.) algorithms, metaparameter settings, data 

preparation methods, supervisory signal, training methods, validation methods, and best-in-class 

metric-based rates of performance. For example, depending on the resolution, satellite or aerial 

street-view imagery, A.I. algorithms can be used to extract the WWR information and detect 

 
5 LiDAR data are remotely sensed high-resolution elevation data collected by an airborne collection platform using 
a combination of laser range-finding, GPS positioning, and inertial measurement technologies to make highly 
detailed DEMs (digital elevation models) of the earth’s terrain, man-made structures, and vegetation. 



HVAC systems. Light Detection and Ranging (LiDAR) technology can be used to estimate the 

footprint of buildings [20] [19].  

With all the input parameters in place, generating models or simulating energy use can take a 

statistical (or spreadsheet) approach or an engineering approach [31], albeit the latter is more 

common. As developed for use at MIT by Atelier Ten, an environmental design consulting firm, 

the spreadsheet approach employs statistical techniques to estimate energy use intensity (EUI) for 

each of the areas of use with internal loads and operating parameters as primary predictors of EUI. 

With this approach, building envelope, vintage and other design parameters do not play significant 

roles in predicting EUI. Therefore, the total annual facility energy use is a linear function of the 

floor area and the EUI of each energy distribution within the facility. In this approach, known 

values of each building within an assigned energy use classification of the facility are regressed. 

The main goal of this model is to produce a means of predicting changes in future energy use from 

future retrofits or other energy use scenarios. Based on modeler experience and knowledge of the 

facility, the models can be iteratively simulated and compared to actual energy use until there is a 

good fit and can be used to simulate the future impact of energy efficiency retrofits [31]. 

The engineering approach, on the other hand, is built on the assumption that building energy use 

is more complex and dynamic than the mere floor areas of the energy use space and involves 

envelope variations, electrical and mechanical systems as well as occupant behaviors, all of which 

can significantly impact on individual building’s energy consumption even if their designated uses 

are similar [31]. The broad categories of input parameters for this modeling approach include 

envelope characteristics such as building geometry, glazing ratios, wall and roof construction; 

internal load ranges such as the per unit area of occupants, equipment, and lighting; and mechanical 

systems such as the cooling and heating setpoints and sources as well as the ventilation flowrate 

[31]. 

 

Scalable compute approaches 

Unlike modeling individual buildings or a few clusters of buildings within an organizational 

environment, generating models and simulating the energy performance of buildings at urban 

scales could be arduous for personal computers or servers to manage. For UBEM at the city, state 

or national level, which involves hundreds of thousands to several millions of buildings, 

computational resources with scalable high-performance capabilities are needed. 

Scalable computing, more broadly defined, is the ability to increase computational performance or 

resources to handle more work [32]. Scaling can happen at the hardware or software level [33], 

but for UBEM, the scalable computing approach that is more applicable is with the software in 

what is known as parallelization. Parallelization involves getting the most efficient speedup time 

from the computing resources (cores or nodes) that are allocated to a work. It is achieved by 

deploying many processors to work simultaneously to achieve very high computational power that 

reduces computational time [32]. In parallelization, the main challenge is coming up with the 

optimal way of breaking up the problem into chunks that can be executed at a reasonably high 

speed, given the computing resources allocated to the task. 



One of the scalable computing approaches for a nation-scale BEM is to categorize buildings into 

different archetypes – a simplified, theoretical building model composed of several characteristics 

that are typically found within a category of buildings with similar attributes [34] – and simulate 

the archetype models for all important climate zones, and multiply the results with the number of 

buildings for each archetype [21] [35]. 

In a novel building energy simulation tool built on EnergyPlus and OpenStudio called AutoBEM 

– Automatic Building Energy Modeling, parallelization techniques were used in the energy 

simulation workflow to simulate 125 million in the U.S. on Argonne Leadership Computing 

Facility’s (ALCF) Theta supercomputer. Theta has 4,392 compute nodes, with each node having 

sixty-four cores. Each core is a 1.3GHz Intel Xeon Phi 7230 processor [36]. This makes it possible 

to parallelize the simulation of sixty-four buildings per node. The challenge to overcome in 

performing this task was to manage the big data output from the simulation and meet the high 

computational demands of the process. To achieve this, there was the need to (1) minimize the 

input-output (I/O) on the main lustre file system (a Linux, high-performance file system used for 

large-scale cluster computing) by running the application entirely in node memory and 

synchronously matching data between nodes and the lustre file system at the start and finish of 

each node’s running, (2) ensure data management optimization by splitting the input data and 

arranging it by core and nodes to parallelize the task, and (3) reduce the total storage requirement 

by restricting data extraction from the compressed output, and examine its content to retrieve only 

the needed files [21]. 

The typical workflow for BEM involves generating OpenStudio and EnergyPlus models from 

several input building descriptors, then simulating each model using EnergyPlus, based on the 

representative city’s Typical Meteorological Year (TMY) weather file for the building’s climate 

zone. However, simulating 125.7 million U.S. buildings using HPC required that the workload be 

better managed. Consequently, the buildings were divided into the 9 U.S. census regions as well 

as California, as shown in the table below. 

 

Table 3: Number of Buildings by U.S. Census Regions 

Region  States #Buildings 

1 
Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, 

Vermont 
5,435,392 

2  New Jersey, New York, Pennsylvania  12,637,184 

3  Illinois, Indiana, Michigan, Ohio, Wisconsin 22,528,155 

4  
Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South 

Dakota 
12,463,109 

5  
Delaware, District of Columbia, Florida, Georgia, Maryland, North 

Carolina, South Carolina, Virginia, West Virginia 
23,558,752 

Nii-Baah
Highlight



6  Alabama, Kentucky, Mississippi, Tennessee 9,977,403 

7  Arkansas, Louisiana, Oklahoma, Texas  15,480,692 

8  
Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, 

Wyoming 
7,551,785 

9  Alaska, Hawaii, Oregon, Washington  5,149,591 

10  California  10,933,546 

 

Each region in the table above represents a Comma Separated Values (CSV) file containing 

building I.D.s, building type, standard and height, among other descriptors in the data preparation 

process. Each CSV by region is used to generate input for the HPC jobs, which are submitted to 

the queue on a shared login node. Depending on the number of buildings in each region and the 

HPC configuration, the maximum size of the job to be submitted is determined. The next thing to 

determine is the number of buildings to be simulated by each core during the job, also called 

churns. Each region is treated separately to keep track of the processes so that issues can be easily 

identified and resolved. A batch (each job within a region) script calls the run generation code for 

each batch of jobs. The run generation code takes the number of nodes and the churns, and the 

input CSV file for the region, now split up so that each core gets a CSV file with just the correct 

number of buildings for the requested number of churns. Each node receives a tarball consisting 

of the split CSV files compressed together and saved to disk. The batch script also generates a job 

submission script which automatically adds the job to the queue [21]. 

Job configuration is an essential aspect of HPC. In generating and simulating building energy on 

Theta, the critical considerations included the determination of how much data (i.e. the number of 

buildings) to process. For 125 million buildings at 80% computing capacity on Theta (i.e. 

3,514𝑛𝑜𝑑𝑒𝑠 × 64 𝑐𝑜𝑟𝑒𝑠), it is possible to run about 224,896 buildings in parallel. As 

experimental results showed that it takes a quarter of an hour (15 minutes) to simulate a building, 

based on an 80% compute capacity, it would take 139 hours (
125𝑀

224,896
× 0.25ℎ𝑟) to process all 

buildings. Another consideration is how long jobs wait in the queue, which is a factor of the 

number of nodes being utilized by a job and the maximum time the job can run, also called 

walltime. Node-intensive jobs would take time to complete before there is space for larger jobs to 

be run. For this consideration, it was determined that a walltime of 2 hours per job (i.e. eight churns 

or eight buildings per core within 2 hours of running a job) could be ideal in reducing the risk of 

having a lot of idle cores while waiting for some cores to finish working on complex buildings. 

The last consideration in the job configuration is resource optimization, to ensure that the greater 

number of cores are running when they should be running instead of being idle (waste of 

resources). Since processing times can vary widely between buildings, balancing out running cores 

and completing a building run is essential. One of the observations made in this project was that 

jobs that utilized 20-25% of Theta’s nodes waited in the queue for 4-5 days, whereas those that 

used 80% of the nodes queued for 6-7 days. Also, since there is a limitation on the number of jobs 



a single user can have in a queue, it was best to reduce the number of jobs that could be in the 

queue. Jobs must be split into chunks such that no one job is too small to run as a production job, 

that is, the theoretical minimum job size that can be run on not less than 128 nodes [21]. 

Parallelization starts on the compute node immediately after leaving the queue, but first, the 

simulation code and the required input data have to be initialized by copying them from the lustre 

file system and untarring (unzip) in the on-node memory. After the initialization, which happens 

on one core (single-threading), the job is then spread out on all cores on the node, with each core 

receiving a CSV file containing building information for the number of churns required. Next, the 

OpenStudio/EnergyPlus workflow is started to generate the building models and simulate each 

building’s energy use and record any error logs that come up to the memory. Close to the end of 

the job’s walltime, each core compresses its output into a tarball and copies it onto the lustre file 

system. 

 

Figure 6: High-level Workflow for Nation-Scale Building Energy Modeling and Simulation with AutoBEM[21] 

Due to constraints that compute resource optimization imposes on the ability of the system to 

complete its runs within an assigned walltime, a job process can often be completed with some 

buildings not simulated. Some factors that are responsible for that, as explained earlier, are the 

variability in buildings’ processing times owing to building and geometry complexity and the 

number of building systems. While there are diverse ways of managing such faults, a redundancy-

based approach was taken with this project. The redundancy strategy employed is that the initial 

job run starts with eight churns per core and then half the churn in the next job resubmission for 

buildings that could not complete their run in the previous job. Suppose during a particular iteration 

at a prevailing run, there are not enough buildings for a full job (3,514 nodes). In that case, those 

missing buildings are added to a pool of buildings (labelled “Remainder” in Figure 7) to reduce 

the job size in a queue. If there are enough unprocessed buildings from a run to constitute a 

production run, they will be added to the next job iteration.  



 

 

Figure 7: iterative Process to Handle Incomplete Jobs [21] 

The iterations for each run at the regional level, indicated by the top-row rectangles in Figure 7, 

do not increase in size as unprocessed buildings are not added to the next run. However, the 

remainder pool, indicated by the bottom-row rectangles, gets larger because it keeps receiving 

more input whenever a run is not completed fully. In both cases, the churn-reducing, iterative 

processes remain the same. Since the walltime of 2 hours remains the same for each iteration of 

run, jobs which were not completed in a previous run will have more time to run in the next. 

Through this process, buildings get twice as much time to run in subsequent iterations compared 

to the previous ones. 

The initial run, involving 92 jobs and 8 churns, yielded an 88.4% completion or processing rate of 

all buildings submitted to it. The 1st rerun consisted of 21 jobs and 4 churns, and completed 34.3% 

of the buildings that were submitted in that run. The 2nd rerun of 21 jobs with only 2 churns had 

an 86.2% success rate. The last run or 3rd rerun uses a single churn. Of the 4 jobs that were 

submitted, the completion rate ranged between 20.1% and 92.1%. 

 

Table 4: Result of Simulated Buildings in each Iteration by Region 

# Buildings Initial Rerun1 Rerun2 Rerun3 

1 5,435,392 4,362,202 518,576 291,327 207,103 

2 12,637,184 9,019,214 1,358,741 1,821,282  

3 22,528,155 22,467,370    

4 12,463,109 10,748,054 791,385 820,444  

5 23,558,752 23,207,301    

6 9,977,403 4,517,672 1,442,752 3,046,398 97,638 



7 15,480,692 15,452,216    

8 7,551,785 7,531,113    

9 5,149,591 5,051,863    

10 10,933,546 10,781,507    

R 

  

  742,174   

% 125,716,992 113,138,512 

89.99% 

4,853,628 

3.86% 

5,979,451 

4.76% 

305,741 

0.16% 

 

The output from this process was worth over 80 T.B. of data on the lustre filesystem. The 

postprocessing mechanism adopted to manage the data involved extracting only the content that 

was certainly necessary to analyze. All this is done without untarring the entire content of each 

node’s tarball output because untarring all outputs at once would result in over 628.6 million files 

on disk and cause the system to run into issues. This postprocessing analysis made use of tarfile 

and multiprocessing libraries in Python. Completed buildings would contain an EnergyPlus file in 

IDF format named after the building I.D., while incompletely processed or unprocessed buildings 

would not contain such files. 

 

  



CHAPTER THREE: DATA VISUALIZATION 

As shown in Chapter 2 under Data sources, building energy modeling involves huge numbers of 

building descriptors. Moreover, running the simulation generates time series data of building 

energy performance in terms of electricity and natural gas consumption. Depending on the time 

intervals (or timesteps) and duration within which the performance is measured, thousands or tens 

of thousands of energy performance data could be generated. These could  be aggregated to provide 

valuable insight on energy performance or demand by month, floor area, zone, load, or end-use. 

Also, by applying the right conversion factors, these data could be utilized to estimate the energy 

cost and carbon footprint of  a building’s energy consumption, as well as savings estimates from 

identified Energy Conservation Measures (ECMs). 

The amount of information to digest from a simulation’s output could be overwhelming for the 

untrained mind to handle and appreciate. To meet the goal of making building energy efficiency 

data more accessible and adoptable by users for their education and implementation of 

recommended ECMs, data must get to them in processed, interactive, exciting and easy-to-

understand formats. Several works have utilized the energy consumption data in comma-separated 

value (csv) format to give a visual representation of building energy performance in the form of 

tables and various statistical and engineering charts such as flowcharts, pie charts, scatter plots, 

bar graphs, line graphs, histograms, time plots, box and whisker [37][38]. While these kinds of 

visualization could be enough for single buildings, solely using such visualization approaches for 

energy performances of clusters of buildings at the urban scale could inundate a user’s view. 

A more tolerable approach toward urban-scale building energy data visualization is to provide a 

means to allow users to choose buildings or areas of interest whose data they would like to view, 

with data filtering functions for easy identification of relevant buildings. One such platform is 

CesiumJS, an open-source JavaScript library for creating interactive 3D globes and maps for 

sharing dynamic geospatial data [39]. Cesium may be installed using the node package manager 

(npm) in Node JS or downloaded and saved in a local directory [40]. The feature of CesiumJS that 

is most relevant to demonstrating the visualization of energy data is 3D Tiles, which allows the 

streaming, styling and interaction with 3D buildings and photogrammetry using CesiumJS 3D 

Tiles. CesiumJS has a web-based live-coding app that can be used to view CesiumJS examples 

called Sandcastle. On CesiumJS Sandcastle [41], one can find a gallery of examples of CesiumJS 

features together with their JavaScript, HTML and CSS codes. A few of the CesiumJS features 

which may be utilized in the demonstration of urban-scale building energy data include 3D Tiles 

Feature Picking [42], 3D Tiles Feature Styling [43], and Camera Options [44], among others. 

These features may be applied to select buildings based on specific building properties such as 

building materials, building type, or age, among others. The camera options feature also allows 

users to navigate buildings based on geolocation data. Moreover, there are features that allow the 

display of building metadata by hovering around or clicking on a building. Figure 8 and Figure 9 

below show screenshots of the features of CesiumJS on Sandcastle. 

 

 



 

 

Figure 8: 3D Tiles Feature Styling on Cesium Sandcastle[43]. The yellow arrow at the top of the image on the right points to the 
dropdown button which displays the feature styling options to choose from. 

 

 

Figure 9: Camera option Features on Cesium Sandcastle[44]. The dropdown button at the top left corner displays options that 
could be added to the camera views. 

 

To demonstrate Cesium visualization with some building energy data, we make use of two sample 

neighborhoods (Soapstone and Waterfront) of buildings in Washington, D.C. The initial camera 

view (the area which is loaded onto the screen when the page starts) was set to Waterfront. The 

Cesium container has all the standard viewer widgets options in the upper right corner of the page 



such as address search bar, Home, base layer selector with imagery and terrain options and 

instructions on how to navigate the globe. There is a mouseover function that displays building 

IDs upon hovering over a building and also pops out a table of building metadata when a building 

is left-clicked. The demonstration also includes two toolbars at the top left corner with color 

filtering and camera functions. A screenshot of the demonstration is shown in Figure 10. The 

interactive features can be explored by following the link here. 

 

 

 

Figure 10: CesiumJS Visualization Demonstration of Virtual DC [45].  

 

  

http://volweb2.utk.edu/~camoo/
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Appendices 

Appendix 1: Customer Discovery Questions for ESCOs and Utilities 

Understanding the Customer 

• What do you do professionally and what’s your role at the company? 

• How important is energy efficient buildings to your operations? 

• What are some building-specific energy needs you have? 

• What specifically about building energy use within your utility service areas is critical to your 

company? 

Understanding the Problem 

• Do you find it hard to generate energy models in a short time, at a low cost, and without needing 

so much data from the building occupants? 

• How have you managed to regulate building energy use within your service areas as a means 

of meeting normal or peak demands? 

• Are they any shortfalls in utility program formulation, ensuring grid resiliency, demand-side 

management or building energy efficiency? 

• How important is data, time of simulation, cost, and reliability of the models to the work you 

do? 

• How motivated are you to solve/improve the challenges in your work? 

• If you had a solution to this problem, what would it mean to you/how would it affect you? 

Suitability of a Plausible Solution 

• Beyond individual or a few collection of building energy models, have you considered large-

scale building energy models at the city, state or national levels? 

o If no, why not? If yes, how might they be of help? 

• What do you think of a solution or software the enables the automatic detection and creation 

of building energy models, leveraging several data sources and high computational abilities? 

Would it solve your problem? 

• Would you ever use such a solution? Why? Why not? 

• What would you like to see in an [ideal] building energy modelling solution or utility-scale 

energy modeling solution that meets your current/future needs? 

o Would you be willing to start using this right away? 

o Would you be willing to pay for the product? How much are you willing to pay? 

Improving the product or the idea 

• What will motivate you to continue using this product? 

• What are the barriers that would prevent you from using this product? 


