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ABSTRACT 

 

The transition to more energy-efficient residential buildings, particularly in low-income 

households, requires innovative methodologies and tools to address the complexities of 

energy conservation. This thesis aims to enhance the effectiveness of residential energy 

audits by developing a comprehensive multi-criteria framework, demonstrating its 

application with existing energy audit software, and establishing a systematic methodology 

for evaluating the lifetimes of energy conservation measures (ECMs). The study's first 

objective was to develop a holistic framework that integrates over 50 factors under 14 

criteria, addressing energy and non-energy considerations such as health, safety, and socio-

economic impacts. The framework provides a structured approach for evaluating energy 

audit software, equipping stakeholders with tools to select solutions that align with the 

specific needs of low-income households. The second objective involved applying the 

framework’s utility to three widely used energy audit software tools – REM/RATE, 

Weatherization Assistant, and TREAT. The comparative analysis highlighted each tool’s 

strengths and limitations, such as REM/RATE’s strong alignment with renewable energy 

modeling and WA’s superior scalability features, while identifying opportunities for 

improvement in user-friendliness and sustainability modules. The third objective focused 

on developing a methodology for systematically and repeatably assessing ECM lifetimes 

across diverse measure types. This methodology integrates statistical techniques, 

manufacturer data, and field testing to produce reliable lifetime estimates. It also addresses 

long-term economic analyses, emphasizing the challenges of uncertainty in evaluating 

ECMs with lifetimes exceeding 30 years. This thesis contributes to advancing residential 

energy efficiency by offering tools and methodologies to streamline energy audits, enhance 

decision-making, and maximize the benefits of energy conservation for low-income 

households. The findings have implications for software developers, program 

administrators, and policymakers, providing actionable insights to improve energy audit 

processes and achieve equitable energy savings at scale.  
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CHAPTER 1  

INTRODUCTION AND GENERAL INFORMATION 

The impact of buildings on energy consumption and greenhouse gas (GHG) 

emission cannot be underestimated, yet buildings also offer the most significant 

opportunity for energy savings and sustainability [1]. Globally, buildings, without 

including the construction sector, are responsible for 30% of final energy consumption and 

28% of direct and indirect greenhouse gas (GHG) emissions [2], and amounted to a 

combined $422 billion (about $1,300 per person) in electricity bills to the average 

consumers in the U.S in 2021 [3]. The International Energy Agency (IEA) and the U.S. 

Energy Information Administration (EIA) forecast a significant increase in building sector 

energy consumption [4]. In its 2019 edition of the International Energy Outlook, the U.S. 

Energy Information Administration (EIA) predicts that energy consumption of all 

buildings worldwide will increase by 1.3% annually between 2018 and 2050. Before 2018, 

building sector energy demand rose by approximately 1.1% per annum between 2000 and 

2017, chiefly driven by precipitous increases in floor area of habitable spaces and growing 

energy intensity of energy services [5]. This increasing trend has implications for the 

average household and also for low-income families in the U.S. whose energy burden (that 

is, the percentage of gross household income that goes into energy bills) is 

disproportionately higher (8.6%), three times more than for non-low-income households 

[6], [7]. In some cases, the energy burden can be as high as 30% when location and income 

are considered [6], [7]. 

Global efforts toward energy efficiency are falling short in the face of the rapid 

increase in building energy consumption. The IEA estimates that efficiency improvements 

need to reach an average of 4% per year by 2030 if we are to meet the global Net Zero 

Emissions target by 2050. This underscores the urgent need for comprehensive and 

effective energy efficiency solutions. [8]. Meanwhile, residential and commercial buildings 

form a substantial unserved market for energy efficiency [9]. Yet less than 1% of U.S. 

buildings are improved each year. 
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Several agencies in the U.S. are working toward building energy efficiency, 

especially for low-income households. This includes the Office of State and Community 

Energy Programs (SCEP), which, among other things, works to accelerate the deployment 

of clean energy technologies, improve the energy efficiency of low-income homes, and 

reduce the cost of energy associated with such households [10]. Similarly, the Building 

Technology Office (BTO) has a long-term goal of reducing energy use intensity (EUI) of 

U.S. buildings by 50% compared to the 2010 baseline and minimizing building EUI in the 

short-term by 30% by 2030 compared to the 2010 baseline [11]. BTO aims to achieve this 

by developing, demonstrating, and promoting the uptake of high-performing technologies, 

tools, and services. These efforts focus on making new and existing residential and 

commercial buildings energy efficient, affordable to purchase and operate, capable of peak 

performance, and conducive to occupants' health and safety conditions. This would make 

all homes and buildings operate at peak energy performance, affordable, and provide 

optimal health conditions and comfort. On the international front, the IEA proposes that 

digital products to reduce building sector energy consumption and GHG emissions are 

outstanding energy efficiency solutions. [12]. 

In the different goals and objectives of energy efficiency programs, there is the 

convergence of technology, performance, and affordability at the heart of energy efficiency 

solutions to meet the needs of low-income households. Meanwhile, about 50 million low-

income families (44% of households) in the U.S. may not be able to afford energy 

efficiency improvements in their homes. Some of the energy efficiency programs being 

implemented to address these concerns include the Better Buildings Initiative [13], Better 

Climate Challenge [14] and the Energy Saver [15] programs. However, specific to low-

income households is the foundational program of the SCEP, spanning over 40 years – the 

Weatherization Assistance Program (WAP) – which is the single most extensive residential 

whole-house energy efficiency program to reduce energy costs for low-income households 

in the U.S. through improved energy efficiency [16]. 

This makes research in energy efficiency solutions for low-income households a 

subject of grave importance if we are to meet national energy efficiency goals in the U.S. 
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Yet, central to most building energy efficiency programs are energy modeling or energy 

audit software, but the framework for developing such tools to meet the ever-evolving 

needs low-income family households are lacking. This study proposes and expands on a 

criteria framework that could be used in residential energy audits for low-income 

households. Energy auditors, energy efficiency program administrators, and managers, as 

well as energy modeling software developers, may find it helpful in developing, selecting, 

and improving energy audit or modeling software that addresses the energy and non-energy 

aspects of a residential energy audit for users and beneficiaries while meeting the core goals 

of energy efficiency. The framework will also provide a qualitative and quantitative 

description of a list of criteria in the form of a scoring model. With this model, different 

energy audit software can be assessed to determine their suitability for specific energy 

efficiency program requirements or an overall score-based capability of the tool based on 

an aggregate score of all criteria. This research builds on previous work [17] by the U.S. 

Department of Energy (DOE), wherein select energy audit tools were reviewed to support 

establishing a national building performance assessment and rating program. 

Another aspect of this research will seek to address how to evaluate energy 

conservation measure (ECM) lifetimes to develop a repeatable evaluation methodology for 

ECM lifetimes applied in low-income, residential energy efficiency programs in the U.S. 

Understanding how to evaluate ECMs lifetimes is of paramount importance, and ensures 

accurate and reliable evaluation methodologies that can help in effective decision-making, 

resource allocation, and long-term planning. By including measure lifetime in the study, 

this research will establish a systematic and standardized approach that can be applied 

across a diverse range of ECMs, enabling consistent, repeatable, and informed decision-

making. 

1.1 Brief overview of the energy efficiency challenges in the United States 

The building sector's greatest challenge is high energy consumption, as buildings 

account for 30% of final energy consumption [2]. In 2021, the average U.S. consumer's 

electricity bills amounted to $422 billion (about $1,300 per person) [3]. 
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Buildings are also a major contributor to greenhouse gas (GHG) emissions, 

accounting for 28% of direct and indirect emissions [3] (29% in the U.S.) [19], with two-

thirds of this emission coming from the surging electricity consumption in this sector. 

Remarkably, since 2000, the rate of electricity consumption in buildings outpaced carbon 

efficiency efforts of the power sector by a factor of five [20]. Amid the rising carbon 

footprint of buildings, the IEA notes the key role that technology could play in not only 

reducing CO2 emissions but also improving occupant comfort. For example, using heat 

pumps for heating and solar thermal technologies could cut energy use by a factor of four 

and provide carbon-free heat to nearly 3 billion people, respectively [20]. 

The lack of diversification in energy efficiency saving sources is emerging as one 

of the challenges of energy efficiency facing the residential sector in the U.S. [21]. 

Traditionally, energy efficiency has focused on known areas of high consumption, such as 

lighting and HVAC, with little attention to plug-in equipment. Meanwhile, in California, 

for example, the Natural Resources Defense Council (NRDC) reports that plug-in loads 

make up only 12 percent of electrical efficiency programs in the state, even though two-

thirds of California’s residential energy consumption is attributed to plug-in equipment 

(see Figure 1.1) [22]. This shows that the rate at which plug-in loads are growing in 

residential buildings exceeds appliance efficiency standards. Existing energy efficiency 

programs are not vigorously pursuing and capturing these areas, leaving potential saving 

areas unnoticed.. Therefore, energy efficiency efforts should focus on the whole building 

and all systems encompassing various end-use applications – wherever there is potential to 

save energy. 



 

5 
 

 
Figure 1.1 Plug-in equipment is responsible for approximately two-thirds of California's residential electricity 

consumption. 

 

  



 

6 
 

Another energy efficiency challenge is the lack of effort to measure or ensure the 

persistence or impact of savings. As governments and organizations spend millions of 

dollars on energy efficiency measures and retrofits, it is essential to ensure that estimated 

energy savings are reliable over the lifetime of installed systems to meet climate goals and 

for future planning purposes. In the past, the means to measure actual savings, such as 

using smart meters, were lacking, and decision-makers relied heavily on engineering 

calculations or estimates from economic analysis. The surge in smart meter data and 

complex data analytics tools comes with it the ability to monitor changes in building energy 

consumption or savings as well as observe their significance and persistence across the 

entire building [23]. Yet, amid recent developments in smart metering technologies to 

enable real-time monitoring and measurement of energy consumption/savings, little 

attention is being given to the post-retrofit impact of energy efficiency measures. At an 

MIT Energy Initiative symposium to tackle needed actions to move energy efficiency 

forward, “big data” was identified to play a key role in tracking energy use and monitoring 

which energy efficiency efforts are working [24]. This is especially important for energy 

efficiency programs for low-income households funded by taxpayer dollars. Program 

administrators must be able to measure post-retrofit savings and other forms of impact. 

The seeming disconnect between building energy efficiency and GHG emissions 

reduction goals is attributed to the lack of effort to measure the persistence of savings as 

described above. Building energy efficiency has a crucial role in meeting climate goals, yet 

little connection is made between the two, so it is not clear how meeting the objectives of 

one is helping the other. The goals of energy efficiency must not only be understood in 

terms of reducing energy cost/consumption of building occupants or operators but also in 

the broader context of reducing or avoiding GHG emissions [21]. For building occupants 

or operators who care about positive climate action, this becomes a motivation for 

collective ownership of organization- or government-led energy efficiency programs to 

realize greater benefits. 

Another concern this proposal is partly devoted to solving is energy modeling 

software. In a report by the U.S. Department of Energy summarizing some of the gaps and 
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barriers to implementing residential building energy efficiency strategies, the issues 

identified regarding energy modeling software include (1) overprediction in older or 

existing homes, (2) traditional software more tailored to equipment sizing, commercial 

buildings, and new buildings, rather than new and existing residential buildings, and (3) 

not reliably predicting pre-retrofit energy use and post-retrofit energy savings [25]. Related 

to all of this is the limited access to energy utility data, further heightened by privacy 

concerns that make it convenient for utilities to deny utility data requests [25]. While this 

research will not attempt to solve each existing issue with energy modeling software 

development, primarily those applicable to buildings occupied by low-income families, the 

framework it proposes will provide directions that make solutions possible. 

1.2 Problem Statement 

Meeting the needs of low-income households requires that energy auditors or 

managers carry out energy audits following federal or state regulations, using energy audit 

software or energy modeling tools, and following standard procedures for carrying out 

energy audits in residential buildings, which make up about 95% of U.S. building stock 

and 70% of the total square footage of the building stock [26]. Interestingly, even though 

U.S. residential buildings are disproportionately higher than commercial (or non-

residential) buildings, there have been in existence for more than two decades standard 

“procedures for commercial energy audit” [27] by the American Society for Heating, 

Refrigeration and Air-Conditioning Engineers (ASHRAE), but none tailored explicitly for 

residential buildings. While the laid-out procedures for commercial building energy audits 

may apply to residential buildings and the general goal of commercial building energy 

audits – reduction of energy use and associated cost – may be deemed the same for 

residential buildings, there is more involved in residential building energy audits than just 

reducing energy use and cost. The variability of residential buildings by type – single-

family, multifamily, and mobile homes – and economic levels of building occupants – low-

income and non-low-income – require a more nuanced approach to energy audits that 

sufficiently captures the complexities of different building types or occupants. Besides, 

carrying out energy audits, especially in residential buildings, may involve or pose non-
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energy concerns [28], such as health and safety concerns that need to be captured and 

addressed within the scope of energy audits. This is especially true for low-income 

households. All modern energy audits rely on energy audit software or other similar 

computer programs. However, there is hardly a comprehensive, well-laid-out framework 

for residential energy audits that energy auditors or energy managers could follow not only 

in selecting the most suitable software for these tasks but also in addressing some of the 

most pertinent energy- and non-energy-related challenges for both the auditors and the 

beneficiaries. 

Another problem that this proposal seeks to address is the lack of understanding 

and viable evaluation methodologies for energy conservation measures (ECMs). 

Evaluating ECMs and their lifetimes is crucial in determining the effectiveness and long-

term viability of energy efficiency measures. Most energy modeling software comes with 

default ECM lifetimes to guide energy auditors in using the software to carry out energy 

audits. However, ECMs are constantly evolving in their technology, application, and 

persistence (duration during which they yield energy savings). Therefore, energy efficiency 

program administrators or implementors must know how to evaluate ECMs, especially 

their lifetimes. However, no repeatable methodology provides a systematic and 

standardized approach that can be applied across various ECMs to enable consistent, 

reproducible, and informed decision-making. 

1.3 Research Significance 

The research will advance knowledge in energy efficiency and provide practical insights 

for stakeholders involved in low-income energy efficiency programs and policies. 

Specifically, this research holds immense significance in the following ways and for the 

following reasons: 

I. Mitigating Energy Poverty: One of the primary drivers behind this research is the 

urgent need to alleviate energy poverty among low-income households. A 

comprehensive multicriteria framework for energy audit software selection tailored 
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to their specific needs can significantly reduce the energy burden on vulnerable 

households. This, in turn, can lead to improved living conditions, reduced financial 

stress, and enhanced well-being for millions of individuals and families. 

II. A Novel Tool: By providing a new framework for assessing energy audit software 

and methodology for evaluating lifetimes of energy conservation measures, energy 

modeling software developers and energy efficiency program 

administrators/managers will have a new approach to going about energy audits. 

Also, decision-makers will be able to understand better and analyze the economic 

viability of implementing ECMs for a well-informed decision-making process. 

III. A Whole Impact Approach: Traditional energy assessments have often focused 

on the energy aspects of energy efficiency retrofits. This novel framework also 

considers the non-energy aspects of energy efficiency not as unintended 

consequences or benefits but as deliberate considerations, thereby helping to 

measure the full range of impacts of residential energy efficiency projects for low-

income households. 

IV. Measuring and Verifying Impact: Ensuring the persistence and impact of energy 

savings is a critical challenge in energy efficiency programs. This study explores 

the possibility of a repeatable methodology for evaluating energy conservation 

measures to measure and verify energy savings. Doing so ensures the reliability and 

accountability of energy efficiency efforts, a key aspect of achieving sustainability 

and demonstrating program effectiveness. 

V. Guiding Government Initiatives: Government agencies and policymakers invest 

significant resources in energy efficiency programs for low-income households. 

This research can provide valuable guidance and evidence-based insights for 

designing, implementing, and evaluating such programs. Offering practical 

solutions and methodologies can help government initiatives achieve their energy 

efficiency and social equity goals more effectively. 

1.4 Research Questions 

To guide the research, the following fundamental research questions were explored: 
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• How can a comprehensive multicriteria framework for energy audit software 

selection be developed, and what criteria should be included to meet the specific 

needs of low-income households while considering both energy and non-energy 

factors? 

• How can the developed framework be tested and demonstrated with existing 

software for residential energy audits to show its strengths and weaknesses? 

• What methodologies can be established to evaluate the lifetimes of energy 

conservation measures (ECMs) in residential buildings, especially in the context of 

low-income households, and what are the considerations for assessing the cost-

effectiveness of long-lived measures? 

1.5 Research Goals 

This research aims to develop and demonstrate a comprehensive multicriteria 

framework for energy audit software and evaluation methodologies for energy 

conservation measures tailored for low-income energy efficiency programs. To achieve 

this goal, the following objectives will be met: 

Objective 1: Develop a comprehensive framework for residential energy audits that 

address low-income households' specific needs and complexities, 

encompassing energy and non-energy considerations. 

Objective 2: Demonstrate how the framework works with existing energy audit 

software. 

Objective 3: To establish a systematic and repeatable methodology for assessing the 

lifetimes of energy conservation measures (ECMs) that can be applied 

across diverse ECM types, focusing on their suitability for low-income 

households. 
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1.6 U.S. Department of Energy (DOE) low-income household energy efficiency 

targets 

This work is funded by the Office of State and Community Energy Programs 

(SCEP), and the mission of the SCEP is to partner with state and local organizations to 

deploy clean energy solutions, boost regional economic development through the creation 

of jobs, reduction of energy costs, and pollution prevention. Foundational to SCEP’s 

mission are programs like the Weatherization Assistance Program (WAP), which has been 

running for over four decades. WAP lessens the energy burden on low-income households 

by improving their homes' energy efficiency while prioritizing residents' health and safety. 

Moreover, the WAP has made weatherization improvements and upgrades possible for 

low-income families, helping them save an average of $372 annually. Carrying out the 

SCEP mission through the WAP requires using energy audit tools. This research supports 

the efforts of the SCEP by providing a framework that can be utilized to approve energy 

audit tools for use in WAP. Also, this study supports the efforts of the Oak Ridge National 

Laboratory (ORNL), managers of the DOE’s software for WAP. This research contributes 

to ORNL’s effort by demonstrating ways of optimizing energy savings calculations in 

energy audit software by analyzing the methodologies for estimating the default lifetime 

values of ECMs. It proposes methods for extending these default lifetime values to reflect 

practical use cases better and enhance the economic analyses of ECMs. 

1.7 Research Scope 

This research will primarily focus on low-income households in the United States, 

recognizing the unique challenges they face regarding energy efficiency. The scope of the 

study encompasses the following areas: 

• Residential Building Types: The research will focus on several types of residential 

buildings, including single-family homes, multifamily buildings, and mobile 

homes, to account for the diversity of low-income housing in the U.S. 
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• Energy Audit Framework: Developing a comprehensive energy audit framework 

will involve identifying criteria addressing energy-related and non-energy factors, 

such as health and safety concerns. 

• Evaluation of Energy Audit Software: The research will evaluate energy audit 

software and energy modeling tools commonly used to assess their suitability for 

low-income energy efficiency programs. 

• ECM Evaluation Methodology: A systematic and repeatable methodology for 

evaluating the lifetimes of energy conservation measures (ECMs) will be developed 

and tested, focusing on applicability to various ECM types. 

• Policy and Program Recommendations: This research's findings will inform 

recommendations for policymakers and energy efficiency program administrators 

to enhance energy efficiency programs targeting low-income households. 

1.8 Organization of the Thesis 

The results and information obtained from this dissertation to address the research 

objectives will be organized as follows: 

• Chapter 2: a comprehensive framework for low-income household energy audit 

software. This chapter discusses the approach for developing a framework 

consisting of several criteria that can be used to assess energy audit software or to 

guide the development of energy audit software in the context of low-income 

households. Each criterion of the framework is defined and used to develop a matrix 

of criteria and their defining factors in qualitative and quantitative forms. The 

possible use cases of the framework and their limitations are discussed. 

• Chapter 3: Testing of the Framework. This chapter presents a test of the framework 

developed and discussed in Chapter 2. The framework is tested against three 

software programs based on availability and suitability to low-income contexts. 

The testing results are discussed thoroughly regarding their strengths, weaknesses, 

and applications. These results are also summarized in a table for ease of 

comparison. 
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• Chapter 4: methodologies for evaluating energy conservation measures to 

optimize energy savings in energy efficiency calculations. This chapter is a critical 

review of seven methodologies employed in estimating the lifetimes of energy 

conservation measures. It highlights how the procedure is carried out, its 

advantages and disadvantages, the measures for which they can best be applied, 

and examples of how they have been applied. 

• Chapter 5: a framework for extending default energy conservation measure 

lifetimes in energy efficiency programs. This chapter is an extension of chapter 

four, wherein a methodology is proposed that energy auditors or energy efficiency 

program managers may follow to extend the default lifetime values of ECMs, with 

sensitivity analyses using different scenarios and economic indicators. 

• Chapter 6: conclusions. This chapter highlights the detailed summary of all the 

prior research discussed in chapters 2-5. Also, this thesis's unique contributions and 

impact are discussed extensively, and the recommendations for further research are 

highlighted.  
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CHAPTER 2  

A MULTICRITERIA FRAMEWORK FOR ASSESSING ENERGY 

AUDIT SOFTWARE FOR LOW-INCOME HOUSEHOLDS IN THE 

UNITED STATES  
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This chapter proposes an expansive framework of several criteria and factors for 

developing and assessing energy modeling and energy audit tools. This framework is 

necessary for holistically meeting the needs of low-income households by addressing both 

energy consumption needs and the non-energy impacts of energy consumption. Springer 

submitted the chapter for publication in Energy Efficiency and has undergone peer review 

from the scientific community. It has also been presented at a major conference and a 

research symposium, where it received helpful feedback, which has been incorporated into 

this version.  

 

Acknowledgments: The U.S. Office of State and Community Energy Program sponsored 

this work under contract DE-AC05-00OR22725 with UT-Battelle, LLC. 

 
Chapter Abstract 

In the United States, buildings consume 40% of primary energy, significantly contributing 

to greenhouse gas emissions. This issue is further compounded by the disproportionate 

burden placed on low-income households, spending three times more (8.6%) of their 

income on energy compared to non-low-income households. To meet the global net-zero 

emissions target by 2050, an average annual energy efficiency improvement of 4% is 

crucial. However, only 1% of U.S. buildings are improved annually. Recognizing the 

critical role of technology, agencies have implemented energy efficiency programs like the 

Weatherization Assistance Program (WAP), explicitly targeting low-income households. 

These programs rely on energy auditors who utilize software tools to assess energy 

performance. However, currently, there is no comprehensive framework for selecting the 

most suitable software for low-income housing. 

This paper proposes a novel framework comprising over 50 factors organized under 14 

critical criteria to assess energy audit software specifically for low-income households. 

This framework enables qualitative and quantitative evaluations, empowering stakeholders 

to make informed decisions in energy efficiency programs. The framework's originality 

lies in its tailored focus on the unique needs of low-income housing, offering a valuable 

tool for software developers and program administrators. This framework’s significance is 
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its ability to provide a systematic approach to assessing software options, ultimately 

contributing to improved energy efficiency and reduced energy costs for low-income 

households. Moreover, the framework considers essential aspects of low-income living that 

are often ignored, such as the non-energy impact on health, safety, and comfort. 

2.1 Introduction 

The impact of buildings on energy consumption and greenhouse gas (GHG) 

emission cannot be underestimated, yet buildings also offer the most significant 

opportunity for energy savings and sustainability [1]. Globally, buildings, without 

including the construction sector, are responsible for 30% of final energy consumption and 

28% of direct and indirect greenhouse gas (GHG) emissions [2], and amounted to a 

combined $232 billion in electricity bills to the average residential consumers in the U.S 

in 2023 [3]. The International Energy Agency (IEA) and the U.S. Energy Information 

Administration (EIA) forecast a significant increase in building sector energy consumption 

[4]. Recent analysis from the U.S. Energy Information Administration (EIA) predicts that 

energy consumption of all buildings in the world will increase by 1.3% annually between 

2018 and 2050 [28]. Before 2018, building sector energy demand rose by approximately 

1.1% per annum between 2000 and 2017, chiefly driven by precipitous increases in floor 

area of habitable spaces and growing energy intensity of energy services [5]. This 

increasing trend has implications for the average household and also for low-income 

families in the U.S. whose energy burden (that is, the percentage of gross household income 

that goes into energy bills) is disproportionately higher (8.6%), three times more than for 

non-low-income households [7] In some cases, the energy burden can be as high as 30% 

when location and income are considered [7]. 

It seems that global efforts toward energy efficiency are hardly enough to catch up 

with the increasing building energy consumption rate. The IEA estimates that efficiency 

improvements need to reach an average of 4% per year by 2030 if we are to meet the global 

Net Zero Emissions target by 2050 [8]. Meanwhile, residential and commercial buildings 

form a substantial unserved market for energy efficiency [9]. 
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Several agencies in the U.S. are working toward building energy efficiency, 

especially for low-income households. This includes the Office of State and Community 

Energy Programs (SCEP), which, among other things, works to accelerate the deployment 

of clean energy technologies, improve the energy efficiency of low-income homes, and 

reduce the cost of energy associated with such households [10]. Similarly, the Building 

Technology Office (BTO) is working long-term to reduce the energy use intensity (EUI) 

of U.S. buildings by 50% compared to the 2010 baseline and to minimize building EUI in 

the short-term by 30% by 2030 compared to the 2010 baseline [11]. This it intends to do 

by developing, demonstrating, and accelerating the adoption of affordable technologies, 

techniques, tools, and services that enable high-performing, energy-efficient residential 

and commercial buildings in both new and existing markets. This would make all homes 

and buildings operate at peak energy performance, affordable, and provide optimal health 

conditions and comfort. On the international front, the IEA proposes that digital products 

to reduce building sector energy consumption and GHG emissions are outstanding energy 

efficiency solutions [12]. 

In the different goals and objectives of energy efficiency programs, there is the 

convergence of technology, performance, and affordability at the heart of energy efficiency 

solutions to meet the needs of low-income households. Meanwhile, about 50 million low-

income families (44% of households) in the U.S. may not be able to afford energy 

efficiency improvements in their homes. Some of the energy efficiency programs being 

implemented to address these concerns include the Better Buildings Initiative [13], Better 

Climate Challenge [14], and the Energy Saver [15] Programs. However, specific to low-

income households is the foundational program of the SCEP, spanning over 40 years – the 

Weatherization Assistance Program (WAP) – which is the single most extensive residential 

whole-house energy efficiency program to reduce energy costs for low-income households 

in the U.S. through improved energy efficiency [16]. 

Meeting the needs of low-income households requires that energy auditors or 

managers carry out energy audits following federal or state regulations, using energy audit 

software or energy modeling tools, and following standard procedures for carrying out 

energy audits in residential buildings, which make up about 95% of U.S. building stock 
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and 70% of the total square footage of the building stock [26]. Interestingly, even though 

U.S. residential buildings are disproportionately higher than commercial (or non-

residential) buildings, there have been in existence for more than two decades standard 

“procedures for commercial energy audit” [27] by ASHRAE, but none tailored explicitly 

for residential buildings. While the laid-out procedures for commercial building energy 

audits may apply to residential buildings and the general goal of commercial building 

energy audits – reduction of energy use and associated cost – may be deemed the same for 

residential buildings, there is more involved in residential building energy audits than just 

reducing energy use and cost. The variability of residential buildings by type – single-

family, multifamily, and mobile homes – and economic levels of building occupants – low-

income and non-low-income – require a more nuanced approach to energy audits that 

sufficiently captures the complexities of different building types or occupants. Besides, 

carrying out energy audits, especially in residential buildings, may involve or pose non-

energy concerns [29], such as health and safety concerns that need to be captured and 

addressed within the scope of energy audits. This is especially true for low-income 

households. All modern energy audits rely on energy audit software or similar computer 

programs. However, there is hardly a comprehensive, well-laid-out framework for 

residential energy audits that energy auditors or energy managers could follow not only in 

selecting the most suitable software for these tasks but also in addressing some of the most 

pertinent energy—and non-energy-related challenges for both the auditors and the 

beneficiaries. 

This study proposes and expands on a criteria framework that could be used in 

residential energy audits for low-income households. Energy auditors, energy efficiency 

program administrators, and managers, as well as energy modeling software developers, 

may find it helpful in developing, selecting, and improving energy audit or modeling 

software that addresses the energy and non-energy aspects of a residential energy audit for 

users and beneficiaries while meeting the core goals of energy efficiency. The framework 

also provides a qualitative and quantitative description of a list of criteria in the form of a 

scoring model. With this model, different energy audit software can be assessed to 

determine their suitability for specific energy efficiency program requirements or an 
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overall score-based capability of the tool based on an aggregate score of all criteria. This 

research builds on previous work [17] wherein select energy audit tools were reviewed to 

support establishing a national building performance assessment and rating program. 

2.1.1 The Energy Audit Process: An Overview 

The goal of an energy audit is to identify and prioritize energy efficiency retrofits 

or measures which, when implemented, will lead to significant energy savings that justify 

the investment made – that is, yield a cost-effective, positive savings-to-investment ratio 

(SIR) of a specific minimum value as determined by the energy efficiency manager or 

relevant stakeholders involved. For example, Title 10 of the U.S. Code of Federal 

Regulations, Chapter II, Subchapter D, Part 440 (10 CFR 440) establishes that the 

weatherization assistance program scope requires a SIR greater than or equal to 1.0 [30]. 

Building owners or occupants gain knowledge through an energy audit to make informed 

decisions on managing their energy expenses and about economically viable energy 

efficiency improvements [31]. A good energy audit reduces energy waste, improves the 

health and comfort of the building occupants, and makes the home sustainable [32]. 

The audit process may be divided into three steps: the pre-audit, audit and post-

audit [33]. Also, energy audits could be done at three distinct levels of detail based on the 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 

standards [34]. An ASHRAE Level 1 Audit is a preliminary audit that involves identifying 

no- to low-cost saving opportunities based on a high-level view of potential improvements 

[35]. A Level 2 Audit provides a more detailed analysis of energy costs, usage, and building 

characteristics, leading to generating Energy Conservation Measures (ECMs) based on 

matching budget against costly potential energy savings opportunities. The Level 3 Audit 

offers the most thorough of details and includes the most comprehensive financial and 

engineering analysis of recommendations for which significant capital investment is 

required [33], [35]. 

An energy audit could be done for a whole building, which is the most accurate 

means of identifying energy savings opportunities in the building, or could be tailored to 
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specific systems such as lighting or heating, ventilation, and air conditioning (HVAC) 

systems if there is a particular energy efficiency retrofit to be considered. However, the 

latter could take away from the bigger picture that a whole-building approach can offer 

[35]. 

During the pre-audit process, if records of utility bills of the house to be audited are 

available, they are first reviewed. Typically, utility bill records for the past 12 months 

provide a good overview of the building’s energy consumption profile not only on an 

aggregate scale but also on a benchmark scale such as the Energy Use Intensity or Energy 

Utilization Index (EUI) if the total floor area of the building is known [36]. 

The second step of the audit phase involves a qualified or certified energy auditor 

visiting the site to collect data. Data may be collected through visual inspection of buildings 

and key systems, photographs, site measurements, and interviews of building occupants or 

managers [36]. During this stage, the energy auditor knows of prevailing concerns that 

could not have been known by merely examining building drawings and utility bill records, 

such as signs of infiltration based on blower door tests and infrared imaging, insufficient 

insulation, or old, inefficient HVAC systems. Some valuable information that can be 

gathered through this process includes building occupancy and occupancy schedule, 

envelope construction details, capacities and ratings of HVAC systems, automation, and 

other building system controls. Having a checklist for this process is helpful to avoid 

missing important aspects of the data collection process that may necessitate returning to 

the site. 

The ultimate step of the audit process, the post-audit, involves evaluating the site 

data gathered, analyzing energy and cost savings, developing and prioritizing a list of 

recommendations, as well as summarizing and presenting the findings through reports, 

graphs, and meetings [36]. The analysis often involves a breakdown of energy use in the 

building, cost of energy and retrofits, energy and cost savings using savings-to-investment 

ratios (SIRs), and simple payback. A Level 3 Audit analysis may go further to provide sub-

metering analysis, detailed energy modeling, and life cycle cost analysis [33]. In some 
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cases, facility managers may require the energy auditor to report cost analysis using 

specific factors such as internal rate of return (IRR) and discounted payback. Also, where 

there are recommended utility incentives and tax credits for ECMs, the financial analysis 

should capture that [35]. The analysis should consider all measure interactions and 

acknowledge assumptions. The final report or presentation given to decision-makers 

should contain sufficient information and be comprehensive enough to help them make 

informed decisions on energy saving and cost. 

2.1.2 The Challenges of Energy Audit 

While energy audits help save energy and cost in a building’s operation if actions 

are taken upon their ECMs and installed, they are not without challenges. Implementing 

the ECMs from an energy audit could be expensive in some cases, but not sufficiently 

addressing the challenges that come with such projects could prove to be more costly 

eventually [37]. [38] highlights ten common problems in energy audits based on a survey 

of 300 energy audits. According to the study, one of the leading problems is missed 

improvements, which happens in about 80% of all audits. The lack of comprehensiveness 

of audits has often led to not considering or including essential measures such as high-

efficiency HVAC and HVAC controls, high-efficiency domestic hot water, lighting power 

density and lighting controls, wall or roof insulation, and fenestration improvements [36]. 

Admittedly, energy auditors could be constrained by budget and scope regarding what 

improvement could be implemented. Still, regardless of what measures are economically 

feasible to execute, the purpose of an energy audit is to consider all improvement options 

from which owners, building managers, or energy efficiency program administrators can 

choose what to implement [38]. 

Another challenge concerns a weak scope of work, a problem that characterizes 

77% of audits [38]. Failure to sufficiently define the scope of work could affect significant 

areas to cover during the implementation of ECMs, such as installation location, quantity 

of materials to install, confirming energy rating, and establishing testing requirements for 

installation materials/equipment [39]. For example, regarding quantity and location, it is 
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crucial to get the right amount of materials needed and place them where they are required 

or where they could yield the estimated savings. This means that not getting the correct 

quantity of insulation materials for a retrofit may not produce the estimated energy savings, 

and the same applies to placing a replacement refrigerator close to a heat source. Energy 

rating concerns the equipment's wattage or efficiency rating (kWh/yr), and testing 

requirements apply to physically or visually inspecting equipment/materials to ensure they 

function as anticipated. 

Additionally, 73% of the audits from the survey were found to include 

improvements for which the payback is longer than the period for which the installation is 

anticipated to last [38]. Some audits do not provide such information at all. Supplementary 

to this challenge is the lack of holistic, life-cycle costing based on which to choose the best 

of two measures for the same intended improvement and with the same simple payback 

[40]. 

Poor improvement selection is another frequent challenge of most audits (63%) 

[38]. Such poor selection choices could include choosing the longer of two improvement 

measures with different payback periods. It is not always the case that improvement 

selection follows logic or best practices. Sometimes, they could be influenced by other 

factors, such as the attractiveness of a longer-payback measure to the building owner, 

vendor-driven improvements to promote specific products, or energy-auditor-driven 

improvements to test the limits of unproven or less proven technologies. 

Other problems are missing or unreasonably underestimated the cost of installation 

for which reason they might be chosen over a more economically viable option; poor 

prioritization of improvements; poor description of buildings; insufficient billing analysis; 

overestimation of savings or missing information on savings for recommended 

improvements; and poor or inadequate review such as wrong units of measurement, 

mismatching of equipment types and overlooked errors [38]. Figure 2.1 shows the ten most 

common problems of energy audits and their frequency of occurrence. 
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Figure 2.1 Frequency distribution of the ten most common problems identified in a survey of 300 energy 

audits [38] 

 

2.1.3 The Role of Energy Audit Software 

Energy audit software has a vital role in addressing most energy auditing 

challenges. Energy audit software is predominantly desktop, web, or cloud-based computer 

programs used to describe buildings, facilities, or processes, measure and analyze their 

energy use, and assist in identifying areas of operation where energy waste can be reduced 

or eliminated. An advantage of energy audit software could be the high depth of analysis 

and the rapid delivery of accurate, comprehensive, and cost-effective results or energy 

efficiency solutions [41]. 

Energy audit software makes data entry and processing easy by collecting, 

analyzing, and reporting data. It allows a variety of input methods and data types, including 
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utility bills, pictures, building information, and metering and sensor data, to create detailed 

analyses of a facility or process’s energy performance [42]. 

Typically, the engine of an energy audit software is a set of algorithms that 

combines building physics, local weather data, and economic parameters to simulate 

sophisticated building energy use as well as estimate energy efficiency measures in seconds 

[43]. It also generates reports that capture distinct aspects of the building’s energy use and 

provides an action-driven, prioritized list of recommendations necessary for implementing 

energy efficiency retrofits [33].  

Energy audit software is vital in ensuring that energy auditors are accurate and 

efficient in their work in a way that reduces error, saves time, and is cost-effective. Building 

owners, facility managers, or energy efficiency program administrators can use the reports 

of energy audit software to identify cost-saving opportunities and prioritize energy 

efficiency investments [44]. 

Specific to some of the challenges highlighted in this paper, energy audit software 

is excellent at identifying improvements that could be missed by energy auditors even when 

energy auditors do not specifically include such measures in their analysis [37]. Further, 

the energy audit software can prioritize the retrofit options based on logic rather than 

auditor preference to aid the selection process [45]. The economic parameters that an 

energy audit software will apply in retrofit prioritization and selection are more rigorous 

than what most energy auditors have the luxury of adding on their own [46]. Such 

parameters include life-cycle metrics such as savings-to-investment ratio (SIR), net present 

value (NPV), or return on investment (ROI), among others [47]. It is left to auditors to 

choose which measures to implement within budgetary provisions and constraints [48] or 

according to building owner, operator, or manager preference. Also, some software comes 

with built-in or user-added libraries for fuel cost, location-specific weather data, 

replacement equipment specifications, and costs, all of which are important for ease in the 

modeling process and for defining and strengthening the scope of work for retrofitting. 

Moreover, the ability of some energy audit software to provide billing analysis and 
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calibrate energy consumption and savings against billing analysis could be useful in 

avoiding overestimating errors [49]. Another helpful function of energy audit software is 

the checks that are provided in the program to ensure that inexperienced energy auditors 

have a guide in the form of the acceptable range of values for building descriptors or error 

logs to diagnose simulation problems and ensure that the building description and results 

are within reasonable expectations [50]. Lastly, there is a lower likelihood that software-

generated reports [51] would have human-oversight errors such as duplication errors, 

formatting mistakes, or mismatching errors [52]. 
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Organization of the Framework Criteria 

 

Figure 2.2 Model criteria organized into three main groups 
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The list of criteria that were used to develop the framework may be organized into 

three main groups, as shown in Figure 2.2, each with a different focus. The first group of 

criteria focuses on the software tool and ensures that the tool is functional and has the key 

features that an energy audit software should have. The second group focuses on the user 

and guarantees that the software is accessible and valuable to those who use it. The last 

group focuses on the primary beneficiaries of the energy audit – low-income 

households/families – and ensures that the energy audit meaningfully impacts their lives. 

2.2 Defining the Criteria for the Framework 

Accuracy: For building energy models generated from simulation based on 

building descriptors that have underlining or user-defined assumptions, defining accuracy 

in ‘exact’ terms may be such a misnomer since all computer-generated models are, at best, 

close estimates of actual results when validated against measured data. Variations in factors 

like user behavior, system settings, and specific applications can create substantial 

differences in energy consumption, even among similar buildings. As such, a model's 

energy efficiency results are best represented as a distribution, with the mean indicating 

expected energy demand under standard framework conditions, while the range captures 

deviations from those conditions. This approach allows us to identify buildings with higher 

energy-saving potential, contributing to more accurate energy-saving estimates. Our 

framework will influence accuracy by building descriptors that apply to residential 

buildings at the individual building scale, following computational methods that align with 

proven and acceptable industry standards. 

A known and well-established industry standard is the American National 

Standards Institute (ANSI) and ASHRAE Standard 140, which provide a standard method 

of testing for evaluating building energy modeling (BEM) software [53]. This Standard, 

which provides a set of test cases and metrics to assess how well a simulation software 

predicts a building’s energy usage compared to actual energy usage, plays a critical role in 

ensuring that BEM engines give accurate and repeatable test results to developers, energy 

auditors, energy consultants, energy engineers, and other building energy professionals. 

Another test procedure more aligned to residential buildings and closely mimicking the test 
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procedures set out in ANSI/ASHRAE Standard 140 is the Building Energy Simulation Test 

for Existing Homes (BESTEST-EX) [54]. BESTEST-EX leverages building physics or 

utility bill calibration to provide test procedures that software developers can use to assess 

how their energy audit software performs in modeling energy use and savings in existing 

homes when utility bills (actual energy use) are available [54]. BESTEST-EX provides a 

test suite representing several cases for building physics and calibrated energy savings test 

procedures. In the BESTEST-EX calibration test, an energy modeling or audit software is 

tested against itself [55]. Also, tested software can be compared with some of the most 

advanced simulation engines such as EnergyPlus, SUNREL, and DOE21-1E1, a method 

like ones previously developed by the National Renewable Energy Laboratory (NREL) and 

included in ANSI/ASHRAE Standard 140 [54]. The different cases evaluate a software’s 

ability to model space heating loads and space cooling loads in representative heating and 

cooling climates, respectively, for different retrofit options [58]. It also includes combined 

retrofit cases for heating and cooling climates and all the input data for the other cases [57]. 

In BESTEST-EX, a tested energy audit software is deemed accurate if its simulation results 

fall within, for example, acceptance range maxima and minima, indicated by ‘range’ bars. 

Examples of how the BESTEST-EX tests work are shown in Figure 2.3 and Figure 2.4. 

Here, the blue and green range bars indicate that the heating tests for gas usage/savings 

(Figure 2.3) or cooling test for electricity usage/savings (Figure 2.4) predicted by testing 

three energy modeling software – EnergyPlus, Sunrel, and DOE2.1 – are within acceptable 

ranges in 9 different cases. 

 
1 SUNREL has been retired (no longer in use) and there are more updated versions of EnergyPlus and DOE-2. However, 
the BESTEST-EX has not seen any major update in more than a decade after its development. Regardless, the procedures 
employed to develop it are still relevant for modern energy audit software. 
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Buildings Physics Heating Tests: Annual Gas Usage or Savings 

 

Figure 2.3 Reference simulation results and acceptance criteria of building physics heating tests[55] 

 

Buildings Physics Cooling Tests: Annual Electricity Usage or Savings  

 

Figure 2.4 Reference simulation results and acceptance criteria of building physics cooling test [55] 
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Rather than a strict binary of 'accurate' or 'inaccurate,' accuracy is represented by 

an acceptable range. This range is defined by the specification of average deviations from 

the mean, ensuring tools provide meaningful results even with slight discrepancies. When 

software performance falls outside acceptable ranges but has negligible impacts on utility 

costs, this will not necessarily invalidate the tool as inaccurate. [57]. 

Additional procedures to ensure or improve the accuracy of energy modeling 

software used for energy audits, such as data validation, model calibration, and sensitivity 

analysis, but not discussed within the scope of our proposed framework may be found in 

[58]. 

Simulation Method/Engine: In choosing energy audit software, an equally 

important consideration to complement  accuracy as already defined is the simulation 

method that is employed in its development [59]. There are three main approaches to BEM 

– physics-based modeling, a semi-physical or hybrid method, and a data-driven approach 

[60]. The physics-based method uses the principles of physics, taking the whole building 

as a system together with the interactions of all internal subsystems as well as external 

environmental factors to simulate building energy use [60]. This approach takes input from 

building descriptors (building geometry, lighting, water heating, HVAC, construction 

materials, etc.) and building operation/use (occupancy schedules, plug-loads, and controls 

and sensors) and combines them with local weather data, fuel type, and cost, and runs them 

through physical/mathematical models that could be based on thermodynamics, or mass 

and energy balance to determine thermal loads, system responses and energy use [61]. 

Physics-based models, while typically offering high accuracy, often require substantial 

data and computation resources to develop [62]. 

The semi-physical or hybrid simulation approach combines first-principle physics-

based equations with statistical methods and experiment data, making it more 

computationally efficient and flexible for evaluating energy retrofits across building 

systems [63]. This method can balance the high accuracy of physics-based models and the 

efficiency of data-driven approaches. Still, it may present practical limitations, such as 

vague model naming conventions and a lack of unified software solutions, which can 

hinder widespread adoption [64]. 
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The data-driven approach relies primarily on statistical methods, which can 

produce valuable results with significantly less data and at lower time and monetary costs 

[65]. Although the accuracy of data-driven models may not match that of detailed physical 

simulations, they are often effective for applications where rapid assessment is needed 

[66]Minor accuracy losses do not significantly affect outcomes, particularly when 

factoring in unpredictable variables like user behavior. 

Each approach has its advantages depending on the goals of the energy audit. 

Physics-based models may be ideal for highly detailed and rigorous simulations. In 

contrast, data-driven models may be more suitable for quicker, cost-effective assessments, 

especially when evaluating buildings with varied user behaviors. 

Flexibility: Software is not designed to address all problems, but it can often be 

adapted to address new challenges as they arise. Therefore, minor changes to the issues 

they were initially designed to solve do not necessarily render the software obsolete or 

unusable. This adaptability ensures the software remains relevant and valuable in a 

dynamic environment. [67]. Flexibility in software engineering relates to the software’s 

ability to function normally despite uncertainty in input values or changes in assumptions, 

goals, and processes [68]. Flexible software provides a variety of ways in which the 

software can be used [69], in addition to being run on different platforms. Software 

flexibility allows the tool to be customized to fit individual cases or scenarios' specific 

needs and circumstances [70]. In our framework, flexibility in energy audit software would 

include making the tool customizable and allowing users to input their data and 

assumptions, such as the type of HVAC system, the age of the appliances, or the local 

climate. This flexibility empowers users to tailor the software to their needs and 

circumstances. 

Comprehensive: There are diverse types of energy that can be used in buildings. 

The primary energy types are electricity and natural gas, especially in commercial 

buildings, even though other fuel types include fossil fuels (coal, natural gas, or fuel oil) 

and renewable energy sources (photovoltaic technology, bioenergy, geothermal, and wind 

energy). These energy types could also be used to meet the energy needs of buildings that 

are close together, such as on university campuses or in a city, through a district energy 
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system [71]. Buildings use energy for various purposes, such as lighting, refrigeration, 

ventilation, space cooling and heating, computer operation, cooking, and water heating 

[72]. The energy utilized for each application can vary depending on building type, 

location, and usage patterns [73]. To improve energy efficiency and reduce costs, building 

owners and operators should identify and optimize energy consumption for each use [74]. 

Therefore, it is crucial to comprehensively understand how buildings use energy to 

optimize it for specific use cases. According to our framework, comprehensive energy 

audit software should be able to capture and account for the different fuel types used in a 

building and how they are used. Figure 2.5 shows how energy use might be distributed in 

a residential building by fuel type. According to our proposed framework, the ability to 

capture and the extent to which an energy audit software can account for these variations 

in energy use determines its comprehensiveness. 
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Figure 2.5 Distribution of energy used in commercial buildings by energy type (2021) [75] 

Integration: Integration of software assesses how different software programs 

could be combined into one system so that the various programs can share one database 

[76]. Software integration must allow the different components to communicate with each 

other to increase efficiency [77]. Some software enables integration on different systems 

through Application Programming Interfaces (APIs), which can make cross-platform 

access possible [78]. In our proposed framework, energy audit software integration will be 

assessed by how well the tool integrates with other energy-saving systems, renewable 

technologies, and other programs such as home automation systems and utility rebates – a 

model that has been proven to lead to significant energy and cost savings [79]. 

Consequently, our proposed framework recognizes that energy audit software must include 

such functions. 

Scalability: Software scalability determines how the software can withstand 

expansion in its capacity to handle increased data volumes and user demands without 
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compromising performance [80]. In scalability testing, factors that are often considered 

include response time (time between a user’s request and the application’s response),  

resource usage (memory and bandwidth consumption), and throughput (number of requests 

processed within per unit time [81]. Further scalability metrics are highlighted in [82]. Only 

an extensive scalability test will be able to address the factors raised [83]. For energy audit 

software, scalability is crucial in assessing how easily it can be expanded to support a more 

significant number of households and whether it can be used in different geographic 

locations or run on various hardware and software. However, a considerable scalability 

challenge lies in efficiently gathering the correct data to serve many households. 

Identifying or developing software that requires minimal, easy-to-gather data while still 

providing reliable results could greatly enhance scalability. Such a solution would reduce 

the burden of data handling, allowing energy audits to reach a larger audience more 

effectively. 

Sustainability: This criterion must not be confused with sustainability in software 

development, which measures the impact of development, deployment, and usage of the 

software on the environment, humans, society, and the economy [84], or Green Software 

System defined in terms of the energy consumption and associated carbon footprint and 

resource utilization of software use on the environment [85]. According to our framework, 

this criterion will, however, measure whether the energy audit tool promotes sustainable 

energy practices and supports the transition to renewable energy sources [86]. This is in 

line with Title 10 of the U.S. Code of Federal Regulations, Chapter II, Subchapter D, Part 

440 (10 CFR 440.1), which establishes the scope and purpose of the weatherization 

assistance program not only to increase the energy efficiency of homes occupied by people 

in the low-income bracket but also to provide them with renewable energy technologies or 

systems [30]. Conventional energy audits have focused on efficiency measures to reduce 

energy consumption and associated costs [87] without exploring how renewable energy 

technologies such as solar PV systems and solar hot water systems or options could 

contribute to energy efficiency goals. However, this criterion seeks to reexamine that. 

Another aspect of this criterion will be to assess how energy use or savings are quantified 

in terms of GHG emissions [88] contribution or prevention not only in conventional metrics 
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such as tons of CO2e but in relatable terms such as the emissions contributed or avoided 

by the equivalent of a certain number of cars, trucks or ships. Furthermore, as used in our 

framework, sustainability will consider the social cost of carbon whereby a dollar estimate 

is given of the economic cost or damage of what an unabated CO2 emission into the 

atmosphere would have been [89]. Providing such metrics could significantly motivate 

individuals and organizations to act on matters that would have been ignored. 

Implementation time: About 50 million low-income U.S. households (44% of 

U.S. households) [90] and about 38.6 million are eligible for weatherization under WAP. 

Yet, only about 100,000 homes (less than 1% of U.S. buildings) are weatherized yearly 

under the Weatherization Assistance Program [90]. The low annual rate of weatherization 

is mainly due to funding and administrative constraints, as well as a lack of streamlined 

processes to facilitate the speed and scale of weatherization [91]. At this rate, it would take 

approximately 386 years to weatherize the remaining homes that qualify for weatherization 

assistance. For this reason, implementation time is one of the most crucial consideration 

factors in our framework for low-income households. The implementation time includes 

data acquisition, input, report output, and scope generation. Data acquisition is facilitated 

by an audit checklist comprehensive enough to guide an energy audit's walkthrough and 

data acquisition phase. An energy audit software should have or generate such a checklist. 

The implementation time is also enhanced (reduced) by the ease with which gathered data 

is fed into the software. Input is made easier when the software has clear and concise 

labeling, making it easy for users to understand what data is required in each field. Also, 

adding in-built data validation would ensure that the correct data type or format is entered 

to avoid errors. Where the wrong data is input, an inline error message should help users 

quickly identify and correct such errors. An intuitive and organized user interface would 

provide users with a clear data flow and make navigation easier. Other factors of easy data 

input, such as keyboard shortcuts, multi-language support, screen optimization, and 

contextual help, such as tooltips, are essential but have been included in a criterion named 

user-friendliness to avoid redundancy. 

After data gathering and input come report output (ECMs) and scope generation. 

The outputs directly relate to how fast the computer can process and generate results from 
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the local CPU or receive them from remote servers. In our framework, we will consider 

the execution time of an energy audit software from when a building that has been 

characterized is run through the simulation engine to when the results are ready. The 

importance of the implementation time is that it helps to determine the number of homes 

that can be analyzed within a specified time. An efficient energy audit software should 

minimize processing times, but equally critical is the reduction of data complexity and the 

amount of data required. This focus on essential data would enable energy auditors to 

complete audits more quickly and accurately, expanding the number of homes that can be 

audited in a given period. For a fair assessment, using one set of building characteristics 

for all software tools is vital for easy comparison. Regardless, the authors acknowledge 

that extenuating circumstances could impact implementation time but have little to do with 

a tested software’s capability or the energy auditor’s competence, even when the same 

software is tested iteratively under the same experimental conditions [92]. 

User-friendliness: User-friendliness in software shows whether the tool is easy to 

use and understand for users with limited technical expertise. A software’s design is 

informed by its purpose and users. To provide the best user experience, developers must 

stay connected with the software users through research and feedback. [93] provides a 

taxonomy of factors to consider when designing applications with user-friendly interfaces 

and defines them. The relevant aspects of [93]’s taxonomy adopted for our framework 

includes speed, ease of use, aesthetic appeal, responsiveness, efficiency, and smartness. 

Others are plugins, security features, error control, updates, and support. 

Support: Software must come with adequate support [94], such as user manuals, 

customer service, and training materials that address how to install, launch, and use the tool 

[95]. Support must be given through online and offline means [93]. Online support [96] 

includes Frequently Asked Questions (FAQs) and answers, submitting support tickets, 

phone communication for technical and business support, online chat, video calls and 

webinars, remote connection, and emails. Offline support could come in the form of a 

“Getting Started” manual, user guide, and training sessions. Responses to requests for 

support must be prompt and exhaustive to ensure customer satisfaction. Beyond the support 

developers give to enhance user experience, users' requirements play a crucial role in 
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software development, as user needs are constantly evolving [97]. Therefore, part of the 

support should also be tailored to provide a continuous feedback loop whereby users can 

share their experiences and needs [98]. 

Cost: The criterion of cost in our framework measures the affordability of the tool 

for users or beneficiaries. Different software would have various pricing models [99]. 

Regarding energy audit software in the U.S., most software developed or sponsored by 

government bodies and agencies is free to download and use. These types of software may 

be available to the public for expert and untrained users at no cost. There is other 

government-agency-approved software that is paid for by government bodies for use by 

expert users in carrying out agency-funded tasks in a Business-to-Business (B2B) 

transaction [100]. Other cost models which are explored under this criterion include 

software licensing [101] with or without maintenance fees or subscription-based models 

such as software as a service (SaaS) [102] with options that include metered usage 

payment, active user counts, or freemium models – that is, a free trial for a limited period 

or a free version with basic, limited functionalities [103]. 

Accessibility: Accessible software works for all people regardless of hardware, 

software, geographic location, language of the user, or physical ability or disability [104]. 

Our criterion of accessibility would address the concerns of whether, for example, the tool 

would be accessible to rural households or energy auditors who go to work in remote places 

with limited internet access or other technological barriers. Also, our definition of 

accessibility goes beyond having electronic access to the tool; it also measures how a 

person can use what is available. For example, if a person has a physical or neuromuscular 

disorder that poses limitations in fine motor control so that such a person would instead 

use the keyboard rather than the mouse, will all the functionalities of the software still be 

accessible from a keyboard [104]? Moreover, does the choice of colors make it easier for 

those with color blindness to access the software [105]? Addressing disability concerns 

should also factor in those with hearing, cognitive, and speech disabilities. 

Impact: According to our framework, the impact of an energy audit software would 

be measured by whether it is achieving what it was built for. For other types of software, 

the impact is measured by the number of active users, customer acquisition rate, monthly 
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recurring revenue, customer satisfaction, product engagement, or deliverables met [106]. 

In our framework, the impact of energy audit software on low-income households would 

be ascertained by whether the tool leads to significant energy savings and cost reductions 

for households. Also, non-energy impacts (NEIs) could be considered, such as operations 

and maintenance savings, occupant comfort, occupant productivity, property value 

improvement, and lower debt, among others [107]. While NEIs are undoubtedly useful, 

some are hard to quantify [108], and their immediate benefits may not be readily 

ascertained as a basis for software selection or scoring. Therefore, NEIs will not be 

included in our framework except those related to health and safety, which are discussed 

in the criterion named “Health and Safety (Indoor air quality).” 

Health and Safety (Indoor air quality): This criterion discusses the health and 

safety aspect of NEI that stems from energy-audit-based retrofit, focusing on the occupant 

[109]. We consider that energy audit software should provide building occupants with 

greater control of the building, reduce unwanted temperature variations, and improve 

indoor air quality, among others [110]. However, the health and safety aspects of energy 

audits for building occupants should not come as unintended benefits; energy audit 

software should be intentionally designed to address such concerns. This could be 

implemented by including a checklist that checks for symptoms often associated with 

building-related health concerns [111]. Additionally, observation checklists could be used 

to observe or evaluate the presence of lead, moisture and mold, radon, formaldehyde and 

volatile organic compounds (VOCs), pest infestation, and safety hazards, bearing in mind 

the nature of the occupants—elderly, disabled, children, etc. 

2.3 Chapter Summary 

In this research, we proposed an expanded framework of factors that should be 

considered in energy audit software approved for energy efficiency programs, particularly 

for low-income households. The framework includes more than 50 factors organized under 

14 assessment criteria and can be used to score different energy audit software to determine 

their suitability for specific energy efficiency programs. The proposed framework can 

contribute to developing more effective energy audit software for low-income households, 
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which can reduce energy consumption and costs and contribute to the global net zero 

emissions target by 2050. The framework also recognizes the importance of sustainability 

and the social cost of carbon in energy efficiency solutions for low-income households.  
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CHAPTER 3  

EVALUATING ENERGY AUDIT SOFTWARE FOR LOW-INCOME 

HOUSEHOLDS: A COMPARATIVE ANALYSIS OF THREE 

SOFTWARE USING A MULTICRITERIA FRAMEWORK  
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This chapter demonstrates the applicability of the proposed framework in Chapter 2 by 

evaluating three energy audit software tools against a slightly updated version of the 

framework criteria. The comparative analysis revealed that while each software tool has 

distinct strengths and limitations, the framework effectively highlights its suitability for 

specific contexts and identifies areas for improvement. This chapter is an article in 

preparation for submission to a journal. 
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Chapter Abstract 

Energy audit software is critical in identifying energy-saving opportunities within 

residential buildings. Yet, limited research has explored the effectiveness of these tools 

specifically for low-income households, where health, safety, and cost considerations are 

paramount. This study introduces a novel, multi-criteria framework to assess the suitability 

of energy audit software for low-income residential applications. The framework evaluates 

software tools across 14 criteria categorized as software-focused, user-focused, and 

household-focused, with over 50 assessment points designed to capture both quantitative 

and qualitative aspects of performance. Three widely used software tools – REM/RATE, 

Weatherization Assistant (WA), and Targeted Retrofit Analysis Tool (TREAT) – were 

evaluated to identify strengths, limitations, and areas for improvement specific to low-

income contexts. Findings reveal distinct trade-offs among the tools: REM/RATE excels 

in compliance with established energy standards and renewable energy modeling but lacks 

health and safety assessments; WA demonstrates superior scalability and health and safety 

checks yet falls short in sustainability features; TREAT provides a balanced user 

experience but is limited in energy standard compliance and renewable energy integration. 

The results stress the need for future software enhancements, including improved health 

and safety modules, renewable energy and emissions metrics integration, and customizable 

features for diverse building and household types. By establishing a comprehensive, 
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adaptable framework for evaluating energy audit tools, this study contributes to energy 

policy and software development. It supports more effective energy audits that meet the 

specific needs of low-income households. 

 

3.1 Introduction 

Buildings are major contributors to global energy consumption and greenhouse gas 

emissions, with residential and commercial buildings in the United States accounting for 

about 40% of primary energy use and related emissions [112] – a trend that continues to 

rise [113]. Low-income households face a disproportionately high energy burden, 

averaging 8.6% of income, which is nearly three times that of non-low-income households 

[114]. Addressing this inequity through energy efficiency improvements is essential, as 

reducing energy use by an average of 4% per year over this decade is required to achieve 

global net-zero targets by 2050 [115]. Currently, however, fewer than 1% of U.S. buildings 

undergo efficiency upgrades annually [112]. 

Energy audits are instrumental in enhancing the energy efficiency of residential 

buildings, particularly for low-income households [116]. Recognizing this, government 

agencies have implemented energy efficiency programs such as the Weatherization 

Assistance Program (WAP), the largest residential energy efficiency initiative in the U.S., 

which aims specifically to reduce energy costs for low-income households [90]. 

Software tools have become vital in conducting effective energy audits. These tools 

allow auditors to assess building energy performance, identify potential savings, and 

recommend cost-effective upgrades [117]. These tools streamline data collection, analysis, 

and reporting, enabling auditors to deliver more reliable, comprehensive assessments 

[118]. By simulating building energy use and evaluating potential savings from different 

retrofits, energy audit software provides detailed insights for homeowners and program 

administrators. 
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Within many energy efficiency initiatives, energy auditors must follow designated 

audit procedures and use approved software tools [119]. However, a well-defined, 

comprehensive framework for selecting the most suitable software – particularly for low-

income households – has been lacking. This study addresses this gap by developing an 

expanded criteria framework for determining energy audit software within programs 

targeting low-income communities. 

Our research compares three widely used energy audit tools – REM/RATE, 

Weatherization Assistant (WA), and Targeted Retrofit Analysis Tool (TREAT) – using a 

novel multi-criteria framework to assess each tool’s suitability for applications in low-

income households. By evaluating these tools against comprehensive criteria, we aim to 

identify the strengths and weaknesses of each option, provide recommendations to improve 

energy audit software for low-income applications, offer guidance to energy efficiency 

program administrators in tool selection, and inform software developers on enhancing 

existing tools or creating new ones tailored to low-income households. 

This study is significant for its potential to contribute to more effective energy 

efficiency programs for low-income households. By refining software selection and 

development, we can improve the reliability and thoroughness of energy audits, leading to 

more impactful energy savings and cost reductions for vulnerable populations. Our 

research aligns with broader goals of reducing energy poverty, enhancing housing quality, 

and advancing climate change mitigation efforts through building energy efficiency. 

3.1.1 Brief Overview of Tools 

REM/RATE, developed by NORESCO Energy Service Company, is widely used 

by Home Energy Rating System (HERS) providers for home rating and energy analysis 

[120].  Weatherization Assistant is a suite of four audit tools created by Oak Ridge National 

Laboratory and is specifically designed for the Department of Energy's Weatherization 

Assistance Program [121].  TREAT, developed by Performance Systems Development, is 

a versatile tool energy professionals use for building energy modeling and analysis [122]. 
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3.1.2 Multi-Criteria Framework for Evaluating Energy Audit Software 

The multi-criteria framework developed for this study introduces an extensive 

range of factors relevant to energy audits for low-income households. Organized into three 

categories – software-focused criteria, user-focused criteria, and household-focused 

criteria – the framework comprises 14 assessment criteria, as shown in Figure 3.1. 

 

Figure 3.1 Organization of Framework Criteria (Updated with Standard Compliance) 

The software-focused criteria primarily address the technical capabilities of each 

software tool. Standard Compliance evaluates the software's ability to meet specific 

residential energy efficiency standards, including ANSI/ASHRAE 90.2 [123], RESNET 

301 [124], and IECC codes [125]. The purpose of the standard compliance criterion is to 

assess the software’s reliability in energy-use predictions and savings estimates. 

Simulation Method/Engine reviews the computational approach (whether physics-based, 

hybrid, or data-driven) and assesses whether it utilizes a state-of-the-art, open-source, or 

proprietary engine. Flexibility considers the software's adaptability across diverse building 

types and responsiveness to varied data inputs. Comprehensiveness assesses the range of 

energy systems and conservation measures that the software can model, including fuel 

types, renewable resources, and end-use energy distribution. Integration evaluates the 

software’s compatibility with other tools and systems, such as home automation platforms, 

utility rebate programs, and renewable energy technologies. Scalability examines the 

software's capacity to handle multiple projects and more extensive datasets and its 
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compatibility with different types of hardware. Sustainability assesses the software's 

capability to include renewable energy options, quantify environmental impacts such as 

greenhouse gas emissions, and provide metrics such as net-zero energy analyses. Finally, 

Implementation Time evaluates the efficiency of the audit process through features such as 

a well-designed user interface, audit checklist availability, and data validation 

functionalities. 

The user-focused criteria assess usability, accessibility, and affordability. User-

friendliness examines the ease of installation, navigation, and general usability of the 

software across various devices, considering factors like keyboard shortcuts, readable 

fonts, clear icons, and intuitive menu layouts. Support evaluates the availability and quality 

of user assistance through manuals, training materials, and channels for user feedback. 

Accessibility reviews the software’s functionality in both online and offline modes, its 

compatibility with assistive technologies, and the availability of features specifically 

designed for users with disabilities. Cost considers the affordability of the software for a 

range of users, examining options such as free trials, subscription pricing, and any pricing 

structures accessible to non-commercial users. 

The household-focused criteria measure the software's capacity to generate 

impactful and safe outcomes for low-income households. Impact (Savings) assesses the 

software's accuracy in predicting energy and cost savings, focusing on its ability to achieve 

results within an acceptable margin of error. Health and Safety evaluates the software’s 

inclusion of checklists for identifying common hazards (such as mold, moisture, lead, and 

radon) and its consideration for specific safety needs of vulnerable populations, including 

the elderly, disabled, and children. 

Each criterion is divided into specific factors and subfactors, totaling over 50 

distinct assessment points. This comprehensive design enables a nuanced evaluation of 

each software tool’s strengths and limitations. The framework incorporates qualitative and 

quantitative assessment methods: the qualitative component offers detailed descriptions of 

each criterion and its associated factors. In contrast, the quantitative component assigns 



 

46 
 

scores to factors and subfactors based on their relevance in assessing software suitability 

for low-income household energy audits. This multi-criteria approach expands traditional 

software evaluation by integrating factors especially important to low-income 

communities, including health and safety considerations, accessibility features, and options 

for affordable renewable energy. 

Table 3.1,Table 3.2 and Table 3.3 summarize the qualitative framework for the 

software-focused, user-focused, and household-focused criteria. 

Table 3.1 Outline of measuring factors in the qualitative framework for software-focused criteria 

Software-focused Criteria (Part A) 
Standard 
Compliance (STC) 

Simulation 
Method/ Engine 
(SME) 

Flexibility (FLEX) Comprehensiveness 
(COM) 

1. Meets 
ANSI/ASHRAE 
90.2 or 
RESNET 301 

2. Meets 
BESTEST-EX 
reference 
simulation 
results and 
acceptance 
criteria 

3. Meets IECC 
Codes 

1. Simulation 
Method 

A. Physics-
based 

B. Hybrid 
method 

C. Data-driven 
2. Engine 

A. Known 
open-
source 
state-of-
the-art 
engine. 

B. Proprietary 

1. Allows 
customization of 
data input and 
assumptions 

1. Accounts for 
different fuel 
types 

2. Accounts for 
renewable 
energy resources 

3. Provides end-
use energy 
distribution 

Software-focused Criteria (Part B) 
Integration (INT) Scalability 

(SCAL) 
Sustainability (SUS) Implementation 

Time (TIME) 
1. Integrates with 

home 
automation 
systems. 

2. Integrates with 
utility rebates. 

1. Support many 
building types 

2. Supports 
multi-building 
aggregation 

3. Runs on 
different 

1. Explore renewable 
energy 
technologies. 

2. Quantifies energy 
usage in terms of 
GHG 
emissions/savings. 

1. Provides an 
audit checklist 
to facilitate data 
gathering. 

2. Clear and 
concise labeling 
to help users 
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Table 3.2 Outline of measuring factors in the qualitative framework for user-focused criteria 

3. Integrates with 
renewable 
energy 
technologies 

software/ 
hardware 

3. GHS 
emission/savings 
metrics are 
relatable. 

4. Provides net-zero 
energy/emission 
analysis 

5. Estimates the 
social cost of 
carbon. 

understand 
required data 
input fields. 

3. In-built data 
validation to 
ensure the 
correct data type 
and format is 
entered. 

4. Inline error 
message to 
identify and 
correct errors 

5. Intuitive user 
interface 

User-focused Criteria 
User-friendliness 
(USE) 

Support (SUP) Accessibility 
(ASB) 

Cost (COST) 

1. Installing and 
uninstalling was 
fast and easy. 
A. Yes 
B. No 
C. N/A (for web 

or cloud-based 
applications) 

2. The application 
provides keyboard 
shortcuts. 

3. Navigating pages 
and input fields is 
possible using the 
tab key 

4. The choice of 
design colors is 
appealing and 
poses no problem 
to the eye 

1. The software 
comes with a user 
manual. 

2. Training materials 
(videos and 
webinars) are 
provided/available 
for use of the 
software. 

3. Provides support 
through emails,  
online chats, 
FAQs and 
answers, or 
contact number 

4. There is a means 
to provide 
feedback to 
developers 

1. Software 
Availability 

A. Online 
mode 
only 

B. Offline 
mode 
only 

C. Offline 
and 
online 
modes 

2. All software 
features are 
available 
from a 
keyboard. 

3. Features and 
reports are 
accessible to 

1. Software is free 
to users with full 
features in a 
non-B2B 
transaction 

2. Paid software 
A. Has a 

limited free-
trial version 
with full 
features. 

B. Has free 
version with 
limited 
features 
with no time 
restrictions 

C. Has a 
limited free-
trial version 
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Table 3.3 Outline of measuring factors in the qualitative framework for household-focused criteria 

5. Font type and size 
are readable. 

6. Icons and shapes 
are understandable. 

7. No issues with 
viewing the tool on 
different devices 
(laptop, tablet, 
desktop) 

8. Running the 
application does 
not affect using 
other activities. 

9. It is easier to select 
items from menus. 

10. It is easier to search 
for information. 

11. Could use the 
application without 
referring to user 
guide often. 

12. The application 
works well with 
[external] mouse 
and keyboard 

13. Software does not 
crash during use. 

14. Software comes 
with regular 
updates and bug 
fixes 

people with 
disabilities 

with limited 
features. 

D. Has no free 
trial version 

Household-focused Criteria 

Impact (savings) (IMP) Health and Safety (HS) 

1. ECMs generated by software lead to 
energy and cost savings, that is 
A. Significantly lower than predicted 

(more than 25% less 

1. Software has checklists to inspect 
general health hazards such as mold, 
moisture, lead, radon, etc. 

2. Software helps to inspect safety 
concerns related to injury prevention. 
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3.2 Methodology 

This study uses a comparative analysis approach to evaluate three widely used 

energy audit software tools – REM/RATE, Weatherization Assistant (WA), and TREAT – 

based on a novel multi-criteria framework explicitly developed to assess their suitability 

for low-income household applications. The research methodology involves a series of 

structured steps, which include framework development, nomenclature and structure 

definition, software selection, software testing, data analysis, and a comprehensive 

comparative assessment. 

3.2.1 Framework Development 

The multi-criteria framework developed for this study integrates a broad set of 

factors essential for evaluating energy audit software for low-income households. The 

framework comprises 14 assessment criteria, further divided into specific factors and 

subfactors to yield over 50 individual assessment points. Each criterion is organized into 

three main groups – software-focused, user-focused, and household-focused – providing a 

comprehensive structure for assessing software capabilities and limitations. 

The framework incorporates both qualitative and quantitative methods. The 

qualitative component provides in-depth descriptions of each criterion and its associated 

factors, enabling a detailed evaluation of software performance. The quantitative scoring 

system assigns numerical values to each factor and subfactor based on relative importance. 

It allows for an overall assessment of each software tool’s suitability for low-income 

household applications. This scoring system was designed to offer a systematic, objective 

B. Around what was predicted (within a 
25% margin of error) 

C. Significantly above what was 
predicted (more than 25% higher) 

3. Software checks the safety of the 
elderly, disabled and children. 

4. Software checks safety related to the 
structural integrity of the building. 

5. Software checks safety related to fire 

and electrical safety 
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approach to evaluating energy audit software, particularly for applications within low-

income households. 

3.2.2 Nomenclature and Structure 

The framework is organized hierarchically, with each criterion (C) divided into 

factors (F) and, where relevant, further subdivided into subfactors (SF). Each criterion is 

represented by an abbreviated code of two, three, or four letters, as shown in Tables 4, 5, 

and 6. The criteria codes include: 

1. Standard Compliance (STC) 

2. Simulation Methods/Engine (SME) 

3. Flexibility (FLEX) 

4. Comprehensiveness (COM) 

5. Integration (INT) 

6. Scalability (SCAL) 

7. Sustainability (SUS) 

8. Implementation Time (TIME) 

9. User-friendliness (USE) 

10. Support (SUP) 

11. Accessibility (ASB) 

12. Cost (COST) 

13. Impact (IMP) 

14. Health and Safety (HS) 

In the quantitative framework, each factor within a criterion is numbered 

sequentially, and subfactors, where present, are identified with letters of the alphabet, 

reflecting the same hierarchy used in the qualitative descriptions in Table 3.1, Table 3.2 

and Table 3.3. For instance, STC-1 denotes the first factor under Standard Compliance, 

while SME-2-B represents subfactor B under the second factor of Simulation 

Methods/Engine. 
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Error! Not a valid bookmark self-reference.,Table 3.5 and 

Table 3.6 illustrate the scoring systems for software-focused, user-focused, and 

household-focused criteria, respectively. Each criterion in these tables has a designated 

maximum score, indicating its importance in the context of low-income household energy 

audits. Points are then distributed among factors and subfactors, with binary subfactors 

receiving full points for “yes” responses and zero for “no.” At the same time, multi-level 

factors allocate points according to levels of compliance or capability. 

The total score for each criterion is derived by summing the points for its associated 

factors and subfactors, and the overall score for each software tool is calculated by 

aggregating the scores across all 14 criteria. This point-based quantitative scoring system 

enables a comprehensive, objective evaluation of the software tools, facilitating 

comparisons and highlighting areas of relative strength and weakness in each tool's 

suitability for low-income household energy audits. 

Table 3.4 Scoring System of Software-focused Criteria 

Table 3.5 Scoring System of User-focused Criteria 

Software-focused Criteria (Part A) 
Standard 
Compliance (STC) = 
11 

Simulation Method/ 
Engine (SME) = 8 

Flexibility (FLEX) = 
5 

Comprehensiveness 
(COM) = 9 

STC-1 
STC-2 
STC-3 

5 
2 
4 

SME-1-A 
SME-1-B 
SME-1-C 
SME-2-A 
SME-2-B 

5 
4 
3 
3 
2 

FLEX-1 
FLEX-2 

3 
2 

COM-1 
COM-2 
COM-3 

3 
3 
3 

Software-focused Criteria (Part B) 
Integration (INT) = 

8 
Scalability (SCAL) 

= 11 
Sustainability (SUS) 

= 11 
Implementation Time 

(TIME) = 11 
INT-1 
INT-2 
INT-3 

2 
2 
4 

SCAL-1 
SCAL-2 
SCAL-3 

5 
3 
3 

SUS-1 
SUS-2 
SUS-3 
SUS-4 
SUS-5 

3 
2 
2 
2 
2 

TIME-1 
TIME-2 
TIME-3 
TIME-4 
TIME-5 

2 
2 
3 
3 
1 

User- or Energy-Auditor-focused Criteria 
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Table 3.6 Scoring System of Household-focused Criteria 

 

3.2.3 Software Selection 

Several critical criteria guided the selection process for energy audit software in 

this study to ensure the tools chosen were applicable and relevant to low-income 

households. Key considerations included the software's ability to accurately assess 

residential building energy performance, its accessibility – favoring free tools or those with 

free trials – and its suitability for evaluating residential buildings commonly occupied by 

low-income families, such as single-family homes, manufactured housing, and multifamily 

units. 

User-friendliness 
(USE) = 23 

Support (SUP) = 14 Accessibility (ASB) = 
7 

Cost (COST) = 9 

USE-1 
USE-2 
USE-3 
USE-4 
USE-5 
USE-6 
USE-7 
USE-8 
USE-9 
USE-10 
USE-11 
USE-12 
USE-13 
USE-14 

3 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
2 
3 

SUP-1 
SUP-2 
SUP-3 
SUP-4 

5 
3 
4 
2 

ASB-1-A 
ASB-1-B 
ASB-1-C 
ASB-2 
ASB-3 

2 
1 
3 
2 
2 

COST-1 
COST-2-A 
COST-2-B 
COST-2-C 
COST-2-D 

5 
4 
3 
2 
1 

Household-focused Criteria 

Impact (savings) (IMP) = 22 Health and Safety (HS) = 10 

IMP-1-A 
IMP-1-B 
IMP-1-C 

5 
10 
7 

HS-1 
HS-2 
HS-3 
HS-4 
HS-5 

2 
2 
2 
2 
2 
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The initial pool of potential energy analysis software included options like Home 

Energy Saver (HES) Pro, Home Energy Yardstick, eQuest®, OptiMiser®, TREAT, 

EnergyGauge®, REM/Rate™ Desktop, and the Weatherization Assistant suite. After a 

thorough review, three software tools were ultimately selected for evaluation: 

REM/RATE™, TREAT, and Weatherization Assistant. This selection focused on their 

specific effectiveness for analyzing residential building types relevant to low-income 

households and aligns with the DOE-approved (US Department of Energy) tools 

recommended for the Weatherization Assistance Program, as outlined in the 

Weatherization Program Notice (WPN 19-4), Attachment 3 [126]. 

While these three tools were chosen to align with the study's objectives, the authors 

acknowledge that other suitable software might also meet the criteria. However, they were 

not included due to limitations in awareness or availability. This selection does not imply 

an endorsement of these tools as the universal optimal choice for energy audits. Instead, it 

reflects a deliberate, focused scope to allow for an in-depth, manageable comparative 

analysis that meets the research objectives. 

3.2.4 Software Testing 

The software testing phase involves a hands-on evaluation of REM/RATE, WA, 

and TREAT using the developed multi-criteria framework, focusing on the most pertinent 

criteria for assessing these tools in the context of low-income household applications. Each 

software tool undergoes a systematic series of tests to evaluate performance across the 

framework's criteria. This process begins with installing and configuring each software tool 

on compatible systems, then inputting standardized building data representing a typical 

low-income household to ensure consistent platform benchmarking. The systematic testing 

process provides a rigorous evaluation of each tool's performance. 

Subsequent tests include running simulations and energy audits in each tool to 

assess functionality, comprehensiveness, and reliability, focusing on evaluating user 

interface design, ease of use, and overall user experience. Each tool’s integration with other 
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relevant systems and databases and its ability to scale to different building scenarios are 

examined. In addition, the time required to complete a full energy audit is evaluated for 

efficiency. Available documentation, support resources, and training materials are 

reviewed to gauge the support each tool offers users. 

While the initial methodology intended to gather quantitative data on simulation 

runtimes, energy savings predictions, and cost estimates, some elements—particularly 

simulation runtime and energy savings predictions—could not be thoroughly tested. 

Observations and detailed notes were recorded for each criterion and subfactor where 

applicable, ensuring a comprehensive qualitative analysis of each software’s strengths and 

limitations. 

3.2.5 Data Analysis 

After completing the testing phase, the collected data is systematically analyzed to 

evaluate the performance of each software tool across the framework’s criteria. This 

analysis involves compiling both qualitative observations and quantitative data and then 

organizing this information by criterion for each software tool. Each criterion and subfactor 

is scored based on the predefined scoring system within the quantitative framework, 

enabling the calculation of aggregate scores for each main criterion and an overall score 

for each software tool. 

The analysis identifies each tool’s strengths and weaknesses by examining 

performance across different criteria, allowing for a comparative assessment of the tools to 

highlight notable differences or similarities. Additionally, the analysis examines the effect 

of particular features or limitations on each tool's overall suitability for low-income 

household energy audits. This phase is designed to deliver an objective, comprehensive 

assessment of each software tool’s capabilities and limitations in meeting the unique needs 

of low-income households. 
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3.2.6 Comparative Assessment 

The final stage of the methodology involves a comparative assessment of 

REM/RATE, WA, and TREAT, using the analyzed data to evaluate each software tool's 

relative performance. This assessment ranks the tools based on overall scores, identifying 

the best-performing tool for each criterion. The comparative analysis highlights each tool's 

strengths and weaknesses in meeting the specific needs of low-income household energy 

audits. Trade-offs between criteria, such as standard compliance versus implementation 

time or comprehensiveness versus user-friendliness, are evaluated to understand each tool's 

balance of features. 

Implications of the findings are considered for energy efficiency program 

administrators, auditors, and low-income households, emphasizing practical outcomes for 

each user group. Standardized building data and predefined criteria enhance the objectivity 

and consistency of the evaluation, minimizing bias and ensuring a fair comparison. The 

methodology also notes potential limitations, such as the inability to test all scenarios and 

the possible effects of future software updates. 

Through this comprehensive approach, the study offers insights into the capabilities 

and limitations of current energy audit software for low-income households. The findings 

guide software developers, energy efficiency program administrators, and policymakers, 

helping them improve and select tools well-suited to energy efficiency needs within low-

income communities. 

3.3 Results and Analysis 

The comparative analysis of REM/RATE, Weatherization Assistant (WA), and 

TREAT revealed significant differences in performance and suitability for low-income 

household energy audits. Each software demonstrated strengths and weaknesses across 

various categories, influencing their effectiveness for specific aspects of energy audits. 

Error! Not a valid bookmark self-reference. presents the total scores for each software 

across all criteria. 
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Table 3.7 Overall Performance Scores of REM/RATE, Weatherization Assistant, and TREAT 

Criteria REM/RATE WA TREAT 

Total Score 90 90 83 

 

General Information 

Vendor Noresco™ ORNL PSD Consulting 

Targeted User HERS service 
providers 

States and local 
weatherization 
agencies 

Varied 

Primary Use Home rating and 
home energy 
analysis/ 
weatherization 

To perform energy 
audit in support of 
DOE’s WAP 

Energy analysis 
and building 
modeling 

Availability Available to the 
general public for 
use/purchase 

Only available to 
States and local 
weatherization 
agents 

Available to the 
general public for 
use/purchase 

Standard Compliance  11 1 2 

ASHRAE 90.2 or RESNET 301 Yes 5 No 0 No 0 
BESTEST-EX Yes  2 Partially 1 Yes 2 
IECC Code  Yes 4 No 0 No 0 
Simulation Method/Engine 8 7 8 

Simulation Method Building 
Physics 

5 Building 
Physics 

5 Building 
Physics 

5 

Simulation Engine NREL 
Engine 
(E+) 

3 Proprietary 
(for NEAT 
and 
MHEA) 
and DOE-
2 for 
MulTEA 

2 SUNREL 3 

Flexibility 5 5 4 

Customization Yes 3 Yes 3 Yes 3 
Assumption Yes 2 Yes 2 Partially 1 
Comprehensiveness 9 6 6 

Variety of fuel types Yes 3 Yes 3 Yes 3 
Renewable energy resources Yes 3 No 0 No 0 
End-use energy distribution Yes  3 Yes  3 Yes 3 
Integration 4 0 0 

Home automation systems No  No  No  
Utility rebates No  No  No  
Renewable energy technologies Yes  4 No 0 No 0 
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Table 3.7 (cont'd) 
Scalability 5 8 8 

Supports many building types Yes 5 Yes 5 Yes 5 
Multi-building aggregation No 0 No 0 Yes 3 
Runs on different systems No 0 Yes 3 No 0 
Sustainability 3 0 0 

Explores RETs No 0 No 0 No 0 
Quantifies energy in GHG Partially 1 No 0 No 0 
Provides relatable GHG metrics No 0 No 0 No 0 
Provides net-zero energy 
analysis 

Yes 2 No 0 No 0 

Estimates the social cost of 
carbon 

No 0 No  No  

Implementation time 9 11 9 

Provides audit checklist No 0 Yes 2 No 0 
Clear and concise labeling Yes  2 Yes 2 Yes 2 
Inbuilt data validation Yes  3 Yes 3 Yes 3 
Inline error message Yes 3 Yes 3 Yes 3 
Intuitive user interface Yes 1 Yes 1 Yes 1 
User-friendliness 18 20 19 

Ease of installation Yes  3 Yes 3 Yes 3 
Keyboard shortcuts No  0 Yes 1 Yes 1 
Ease of navigation Yes  1 Yes 1 Yes 1 
Design colors and visual appeal Partially  1 Yes 2 Partially 1 
Font readability Yes  2 Yes 2 Yes 2 
Intuitive icons/shapes Yes 1 Yes 1 Yes 1 
Device/screen 
compatibility/responsiveness of 
application 

Yes  1 No 0 Yes 1 

Non-interference of application No  0 Yes 1 Yes 1 
Ease of menu selection Yes 1 Yes 1 Yes 1 
Search function No 0 No 0 No 0 
Ease of application use Yes 2 Yes 2 Yes 2 
External hardware compatibility Yes 1 Yes 1 Limited 1 
Application stability Yes  2 Yes 2 Yes 2 
Updates and bug fixes Yes  3 Yes 3 Yes 3 
User support 14 14 14 

User manual Yes  5 Yes 5 Yes 5 
Training materials Yes 3 Yes 3 Yes 3 
Phone or Online support Yes 4 Yes 4 Yes 4 
Customer feedback Yes 2 Yes 2 Yes 2 
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Table 3.7 (cont'd) 
Accessibility 2 3 2 

Software availability Offline 1 Online 2 Offline 1 
Accessibility of features Limited 1 Limited 1 Limited 1 
Disability-friendly No 0 No 0 No 0 
Cost 2 5 4 

Free to user No 0 Yes 5 No 0 
Not free but has:       

A. Free-trial with full features 
No 0 No 0 Yes 4 

B. Free version with limited 
features 

No 0 No 0 No 0 

C. Free-trial with limited 
features 

Yes 2 No 0 No 0 

D. Free-trial version 
No 0 No 0 No 0 

Impact (savings)    

Actual savings < predicted 
(more than 25% less) 

      

Actual savings close to the 
predicted 

      

Actual savings > predicted 
(more than 25% higher) 

      

Health and Safety 0 10 7 

Health hazard (mold, moisture, 
lead, etc.) inspection checklist 

No 0 Yes 2 Yes 2 

Injury prevention checklist No 0 Yes 2 Yes 2 
Safety of the elderly, disabled, 
and children 

No 0 Yes 2 Partially 1 

Structural integrity safety No 0 Yes 2 Partially 1 
Fire and electrical safety No 0 Yes 2 Partially 1 

 

3.3.1 Detailed Analysis by Criteria 
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Figure 3.2 Percentage-Based Comparison of Evaluation Criteria Across Energy Audit Software Tools 

 
Figure 3.3 Relative Performance of Energy Audit Software: Criteria Scores as Percentages of Maximum 

Possible Scores 
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Software-focused Criteria 

Standard Compliance (STC): None of the software tools fully comply with 

ASHRAE 90.2, but REM/RATE distinguishes itself with adherence to RESNET Standard 

301, which supports Home Energy Rating System (HERS) scores and aligns with the 

IECC’s Energy Rating Index (ERI). This compliance enhances REM/RATE's suitability 

for energy rating and modeling. WA and TREAT do not meet RESNET or IECC standards, 

limiting their use in contexts requiring these compliance metrics. REM/RATE and TREAT 

demonstrated full compliance with BESTEST-EX, thanks to their reliance on recognized 

engines like EnergyPlus and SUNREL. Using DOE-2 for MulTEA and the Variable-Based 

Degree Days (VBDD) method for NEAT and MHEA, WA showed partial BESTEST-EX 

compliance, as its monthly simulation output lacks the analytical depth of hourly engines. 

While there are ongoing efforts to transition WA to the EnergyPlus engine to enhance the 

reliability of modeling calculation and enable it to provide Home Energy Scores [127], it 

was not considered in our analysis as it has not yet been implemented fully. 

Simulation Method/Engine (SME): All three tools use building physics-based 

simulation methods, but their engines vary. REM/RATE, with the EnergyPlus engine 

developed by NREL, and TREAT, which uses SUNREL, achieved high scores. WA scored 

slightly lower due to its reliance on DOE-2 for MulTEA and the VBDD method for NEAT 

and MHEA, which utilizes monthly rather than hourly simulations, reducing precision. 

Flexibility (FLEX): REM/RATE and WA are equally flexible because they allow 

utility rate customization and adjustable assumptions. TREAT scored slightly lower 

because it restricts some default assumptions, which users cannot modify. 

Comprehensiveness (COM): REM/RATE leads in comprehensiveness by 

including renewable energy resources, such as photovoltaic systems, in its modeling. This 

sets it apart from WA and TREAT, which do not account for renewable technologies, 

limiting their applicability for audits focusing on sustainability. All three tools 

accommodate various fuel types and end-use energy distributions. 
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Integration (INT): REM/RATE is the only tool offering integration with 

renewable energy technologies, enabling it to model systems like solar PV panels in energy 

consumption calculations. WA and TREAT lack integration capabilities with renewable 

technologies, home automation systems, or utility rebate programs. While all tools assess 

energy efficiency and potential savings, the utility rebate integration feature evaluates 

whether the software connects with specific rebate programs applicable to the audited 

home. Additionally, while all three software tools support thermostat modeling as part of 

standard energy audit functions, thermostats were not included in this integration 

assessment to avoid scoring inconsistencies. 

Scalability (SCAL): WA and TREAT outperform REM/RATE in scalability. WA, 

a web-based tool, is compatible with multiple operating systems, while TREAT supports 

multi-building aggregation, enabling models of scattered buildings to be a single entity. 

REM/RATE and TREAT, desktop applications designed for Windows, require 

virtualization or emulation to run on other systems. All three tools support various building 

types, including single-family homes, manufactured homes, and multi-family buildings. 

Sustainability (SUS): REM/RATE is the only tool scoring in sustainability, 

enabling net-zero energy analysis. This feature, absent in WA and TREAT, sets 

REM/RATE apart as it supports renewable energy calculations and net-zero assessments, 

aligning it with sustainability objectives. 

Implementation Time (TIME): WA excels in implementation time due to its 

built-in audit checklist, streamlining the audit process. REM/RATE and TREAT offer 

similar time efficiency but lack this checklist feature, placing them slightly behind WA. 

User-focused Criteria  

User-friendliness (USE): TREAT was noted for its user-friendly interface and 

device compatibility, while WA’s web-based format simplifies access as it doesn’t require 

installation. REM/RATE provides a well-organized layout but is slightly less intuitive due 

to its color scheme and lack of keyboard shortcuts. All three tools are designed with ease 
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of use in mind and perform comparably in aspects like installation ease, font readability, 

and intuitive icons. However, none of the software includes a search function, which could 

further improve user navigation. 

Support (SUP): All three software performed equally in user support. Each 

software tool provides substantial support options, including comprehensive user manuals, 

training resources like webinars and tutorial videos, and online or phone support. All tools 

also enable users to submit feedback directly to developers, maintaining a channel for user 

input and continuous improvement. 

Accessibility (ASB): WA scored slightly higher in inaccessibility due to its online 

accessibility. This allows it to be accessed from any internet-connected device, giving it an 

advantage over REM/RATE and TREAT, offline desktop applications with specific system 

requirements. However, none of the tools include disability-friendly features like screen 

readers or magnification, limiting broader accessibility for users with particular needs. 

Cost (COST): WA, free to Weatherization Assistance Program participants, is the 

most cost-effective option. TREAT follows with a 30-day free trial with full features, while 

REM/RATE provides a 14-day limited trial. 

Household-focused Criteria  

Impact (IMP): The effect of savings generated by the software tools cannot be 

evaluated without conducting actual audits, implementing the recommended measures, and 

verifying the results over time. As a result, all three software tools are unscored in this 

category, highlighting the need for further empirical testing. 

Health and Safety (HS): WA excels in addressing health and safety concerns by 

incorporating a comprehensive audit checklist that covers critical issues such as mold, 

moisture, lead, fire hazards, and injury prevention. This makes it particularly well-suited 

for low-income households facing heightened risks. TREAT provides partial coverage in 

health and safety areas but lacks the depth found in WA's tools. In contrast, REM/RATE 
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does not address health and safety considerations, indicating a significant gap in its 

suitability for applications focused on the well-being of occupants, especially vulnerable 

populations like the elderly, disabled, or children. 

3.4 Discussion of Findings 

3.4.1 Strengths and Weaknesses 

The analysis of the software tools reveals distinct strengths and weaknesses for each 

in the context of energy audits for low-income households. 

REM/RATE excels in standard compliance, demonstrating superior alignment 

with RESNET Standard 301. Its high level of comprehensiveness, particularly in 

accounting for renewable energy technologies, further enhances its capabilities. Including 

sustainability features, such as net-zero energy analysis, positions REM/RATE as a strong 

option for audits requiring detailed energy evaluations. However, its scalability is limited 

due to lacking multi-building aggregation capabilities and compatibility across multiple 

platforms. Moreover, REM/RATE does not adequately address health and safety 

considerations, which are critical in low-income household energy audits. 

Weatherization Assistant (WA) is well-suited for large-scale auditing programs, 

benefiting from superior scalability and efficient implementation processes. Its integration 

of a comprehensive health and safety audit tool, coupled with its availability free of charge 

for weatherization agencies, enhances its applicability for low-income households. 

Nonetheless, WA's limited compliance with widely recognized energy standards and lack 

of integration with renewable energy technologies or sustainability features diminish its 

utility for programs that heavily focus on energy conservation and emissions reduction. 

TREAT balances user-friendliness and scalability, offering a flexible, user-centric 

interface. It includes features for multi-building aggregation, making it suitable for auditors 

managing complex projects. While TREAT provides moderate health and safety features, 

it does not achieve the same level of comprehensiveness as WA. Like WA, TREAT lacks 
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compliance with essential energy standards and does not support integrating renewable 

energy technologies, limiting its application in audits that prioritize sustainability. 

3.4.2 Implications for Low-Income Household Energy Audits 

The findings from this comparative analysis offer valuable insights for selecting 

and developing energy audit software, particularly within the context of low-income 

households. Practical energy audit tools for these settings must strike a balance among 

critical factors, including reliable energy consumption assessments, adherence to industry 

standards, and the integration of renewable energy technologies. Additionally, they should 

prioritize practical considerations such as health and safety, scalability for diverse building 

types, and user accessibility to maximize their utility across various contexts. 

Audit software must go beyond standard energy modeling for low-income 

households, where health and safety issues intersect with energy efficiency challenges. 

Essential features include comprehensive health and safety checks – for mold, lead, fire 

hazards, and structural integrity –ensuring that energy-saving measures do not compromise 

residents' well-being. Software designed for large-scale, multi-building programs also 

benefits from being flexible and scalable, allowing ease of use across various building 

types and regions while aligning with local energy codes and rebate programs. 

Cost considerations are crucial as well. Access to affordable or free software can 

significantly influence the feasibility of implementing energy-saving measures in programs 

targeting low-income households. Publicly funded initiatives and organizations with 

limited budgets benefit from tools that offer robust features without high costs, helping 

ensure that energy audits and related improvements are accessible to low-income 

households. 

Energy audit software development should prioritize sustainability features, such 

as modeling renewable technologies and assessing net-zero energy potential. As global 

energy policies increasingly emphasize carbon reduction and energy efficiency, audit tools 

will need to integrate metrics that quantify greenhouse gas emissions and support 
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calculations of the social cost of carbon. By addressing these needs, future software 

developments can more effectively contribute to reduced energy consumption, improved 

living conditions, and lower energy costs in low-income households while supporting 

broader environmental goals. 

3.5 Effectiveness of the Multi-Criteria Framework in Evaluating Energy Audit 

Software 

The multi-criteria framework used in this study proved to be a robust tool for 

evaluating energy audit software across measures particularly relevant to low-income 

household energy audits. By assessing the software on a wide array of criteria – 

encompassing technical aspects, user accessibility, and specific household needs – the 

framework provided a comprehensive, multi-faceted comparison highlighting each tool's 

strengths and limitations. While generally effective, the framework revealed several 

strengths and areas where refinements could enhance its application. 

3.5.1 Strengths of the Framework 

The primary strength of the multi-criteria framework lies in its comprehensive 

scope. By evaluating a broad spectrum of categories, including standard compliance, 

simulation methods, scalability, cost, and health and safety, the framework captured 

essential aspects relevant to conducting energy audits in diverse settings. This inclusive 

approach ensured that the evaluation did not focus overly on a single dimension but 

considered each software tool's overall utility. For instance, including user-centered criteria 

like user-friendliness and support added a practical dimension, highlighting usability 

factors that could directly impact auditor efficiency and effectiveness in the field. 

The framework’s quantitative scoring system also offered an objective basis for 

comparing tools. Assigning scores to individual criteria provided a data-driven approach 

to identifying clear performance differentials among software packages, allowing for a 

structured and consistent comparison. The flexibility of incorporating weighting factors 
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was beneficial, enabling prioritization of criteria critical to low-income household audits, 

such as health and safety features and cost-effectiveness. 

3.5.2 Weaknesses of the Framework 

Despite its strengths, the multi-criteria framework also exhibited some limitations. 

A primary challenge was that not all criteria held the same relevance across different 

software applications, yet they were often weighted similarly. This could have led to an 

evaluation where less impactful aspects, such as interface design elements, contributed 

equally to the overall score as critical factors like standard compliance or health and safety. 

Although some weighting adjustments were made to mitigate this, future framework 

improvements would benefit from a more nuanced weighting system that reflects each 

criterion's varying importance based on the software's intended use. 

Another limitation was the framework’s inability to assess the real-world impact of 

recommended measures without actual implementation and sufficient time to measure or 

quantify their outcomes. While the framework did include metrics to evaluate post-

implementation results, it could not fully capture them within this study’s time limit, as 

measuring outcomes like actual energy savings, improvements in household safety, and 

enhanced living conditions require data collection well after audit recommendation 

implementation. Including these outcome-based metrics in future evaluations would 

provide a more comprehensive understanding of each tool's long-term practical 

effectiveness, especially in supporting energy conservation and improving living standards 

in low-income settings. 

3.5.3 Recommendations for Improving Energy Audit Software for Low-Income 

Households 

Based on the comparative evaluation of energy audit software and the unique needs 

of low-income households, the following recommendations aim to enhance these tools' 

technical capabilities and practical applicability in settings where health, safety, cost-

effectiveness, and energy efficiency are critical. 
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I. Enhance Health and Safety Features 

Given the heightened health and safety risks for low-income households, future energy 

audit software should prioritize comprehensive health and safety assessments. 

Incorporating detailed checklists for identifying potential hazards – such as mold, moisture, 

lead, fire, and structural risks – would significantly improve the value of these tools. 

Moreover, considering specific needs for vulnerable populations, including the elderly, 

disabled, and children, within the auditing process would support safer, healthier 

environments in low-income homes. 

II. Integrate Renewable Energy and Sustainability Features 

In line with global energy efficiency and sustainability goals, energy audit software 

should include features that model renewable energy technologies (RETs). Tools that 

evaluate the feasibility and benefits of solar panels, wind turbines, and energy storage 

systems can make clean energy more accessible for low-income households. Additionally, 

features estimating greenhouse gas (GHG) emissions and enabling net-zero energy analysis 

would allow the software to address immediate and long-term energy costs while meeting 

policy-driven carbon reduction targets. 

III. Improve Customization and Flexibility 

Customization options enable auditors to account for local variations in utility rates, 

climate, and building characteristics, tailoring analyses to specific household conditions. 

This flexibility is essential for low-income settings, where unique energy challenges may 

not align with default software configurations. Enhancing user-friendly interfaces for 

adjusting assumptions and input parameters would allow even less experienced auditors to 

personalize assessments confidently and effectively. 

IV. Prioritize Scalability and Multi-Building Support 

Auditing programs serving low-income households often target multiple buildings, 

particularly in public or subsidized housing. Software with multi-building aggregation 

features efficiently analyzes scattered sites, saving time and resources. In addition, web-
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based platforms compatible with various operating systems and devices (e.g., Windows, 

macOS, tablets, smartphones) would enhance accessibility and scalability for auditors 

working in diverse environments. 

V. Ensure Cost-Effectiveness and Accessibility 

Energy audit software affordability is critical for low-income communities and the 

agencies serving them. Developers should consider offering free or low-cost versions for 

public agencies or nonprofits that perform audits in these contexts. Options like free trials 

with full features, limited versions for basic audits, or discounted licenses for public-sector 

use would encourage broader adoption in resource-constrained settings. Additionally, 

making tools accessible online, with minimal system requirements, would further expand 

their reach. 

VI. Improve Usability and User Support 

User-friendly design and robust support options would make energy audit software 

more accessible, especially for auditors with limited technical expertise. Simplifying the 

user interface, including intuitive design elements, and providing tutorials, webinars, and 

technical documentation could support broader, more efficient use. In-built data validation, 

real-time error checking, and checklist features would streamline the process, reducing 

errors and supporting auditors in conducting thorough assessments. 

VII. Incorporate Metrics for Real-World Impact 

In addition to technical precision, energy audit software should help auditors and 

households understand the real-world impact of recommended measures. Including metrics 

for cost savings, energy reduction percentages, and payback periods allows users to assess 

tangible benefits, while estimates of environmental impact (e.g., GHG reduction) offer 

broader insights into sustainability. Such impact metrics are essential for decision-making 

for low-income households, where cost savings directly affect financial stability. 

VIII. Regular Updates to Meet Evolving Standards and Needs 
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As energy codes, regulations, and technologies evolve, software should be 

regularly updated to remain relevant and practical. Maintaining compliance with the latest 

standards (e.g., ASHRAE, IECC codes) and supporting emerging technologies is essential 

for long-term utility. Developers should also actively solicit feedback from users in low-

income contexts to understand and address specific needs. Incorporating this feedback into 

software updates ensures that it remains a practical, effective tool in promoting energy 

efficiency and well-being in low-income households. 

3.6 Chapter Summary 

This study conducted a comprehensive evaluation of energy audit software to assess 

their suitability for use in low-income household contexts, where health, safety, cost-

effectiveness, and energy efficiency are paramount. By applying a multi-criteria 

framework that included technical, user-focused, and household-specific criteria, we were 

able to provide a detailed analysis of the capabilities and limitations of three widely used 

energy audit tools: REM/RATE, Weatherization Assistant (WA), and TREAT. 

The analysis revealed that each software has distinct strengths and weaknesses 

relative to the needs of low-income households. REM/RATE demonstrated strong 

alignment with recognized energy standards and supports renewable energy modeling, 

making it a practical choice for programs prioritizing sustainability. However, its limited 

health and safety features and scalability restrictions reduce its applicability to low-income 

settings. WA, by contrast, excelled in scalability and health and safety assessments, making 

it particularly suited for large-scale, multi-building audits where the well-being of 

occupants is a priority. However, its lack of renewable energy features and limited 

compliance with industry standards may restrict its utility in initiatives targeting energy 

efficiency and emissions reductions. TREAT balanced usability and scalability, featuring 

moderate health and safety tools and multi-building support. Yet, it lacked standard 

compliance and renewable energy capabilities, limiting its effectiveness in sustainability-

focused projects. 



 

70 
 

The multi-criteria framework used in this study proved effective in providing a 

holistic comparison. Yet, it highlighted areas where energy audit software could be further 

developed to meet the specific demands of low-income household audits. For example, 

future framework enhancements could incorporate post-implementation metrics to assess 

real-world outcomes like energy savings, health and safety improvements, and user 

satisfaction over time. Furthermore, the absence of renewable energy and GHG emissions 

assessment capabilities in most tools points to a need for software that aligns with emerging 

global energy policies and carbon reduction goals. 

Several recommendations have emerged from this analysis. Energy audit software 

for low-income households would benefit from enhanced health and safety assessments, 

renewable energy and sustainability features, greater flexibility in customization, multi-

building support, cost-effective options, improved usability, and real-world impact metrics. 

Implementing these enhancements would make the software more adaptable, 

comprehensive, and accessible, supporting auditors, agencies, and households in achieving 

meaningful energy savings and quality-of-life improvements. 

This study underscores tailored energy audit software's critical role in advancing 

energy efficiency and environmental sustainability within low-income communities. By 

addressing the unique challenges these households face, improved energy audit tools can 

potentially drive substantial benefits – not only in terms of energy and cost savings but also 

in fostering safer, healthier living conditions. Future software development should 

prioritize integrating the recommended features to enhance the effectiveness and impact of 

energy audits, supporting broader objectives of social equity, environmental responsibility, 

and economic resilience in low-income settings. 
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CHAPTER 4  

OPTIMIZING ENERGY SAVINGS CALCULATIONS: A 

COMPREHENSIVE REVIEW OF MEASURE LIFETIME 

ESTIMATION FOR ENERGY CONSERVATION MEASURES  
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This chapter evaluates seven methodologies for estimating the lifetimes of energy 

conservation measures: Survival Analysis, Manufacturer’s Data, Industry Standard, Field 

Survey, Accelerated Life Test, Modeling and Simulation, and Expert Judgement. The study 

employs a critical review methodology to describe each methodology and its strengths, 

weaknesses, and applications. The study revealed that while each methodology provides a 

plausible means of evaluating measure lifetimes, the specific context in which measure 

lifetimes need to be estimated may inform which methodology to use, and also notes that 

external circumstances may affect measure lifetimes. This chapter is under review for 

publication in Renewable and Sustainable Energy Reviews. 

Acknowledgments: This work was sponsored by the U. S. Department of Energy’s Office 

of State and Community Energy Program under contract DE-AC05-00OR22725 with UT-

Battelle, LLC. 

Chapter Abstract 

Achieving significant energy savings through Energy Conservation Measures 

(ECMs) hinges on accurate estimations of ECM or measure lifetimes. Measure lifetime 

underpins economic analyses and guides decisions for program implementation. This study 

presents a comprehensive review of measure lifetime estimation, exploring a diverse set of 

methodologies and their applicability. The limitations and importance of context-specific 

data selection are highlighted by delving into traditional approaches like manufacture data 

and industry standards. Valuable insights from field surveys and testing are examined while 

acknowledging their time constraints. Accelerated life tests (ALTs) are presented as a faster 

alternative, with a caveat regarding their real-world applicability. Statistical techniques 

such as data-driven modeling and simulation offer efficient and potentially more accurate 

predictions and can explore scenario planning to empower informed decision-making 

around measure selection, replacement schedules, and overall energy management 

strategies. Expert judgement also plays a vital role, particularly for novel technologies or 

situation with limited data. However, the elicitation processes must be carefully considered 

to minimize bias and ensure reliability. Additionally, the study acknowledges the factors 
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that could affect lifetime estimates by highlighting the critical influence of environmental 

factors and the necessity of project-specific considerations when selecting data sources. 

Furthermore, the study offers statistical techniques like the Weibull distribution for 

deriving representative lifetime values from diverse data sources, fostering consistency and 

enhancing the accuracy of energy savings calculations. The approaches given in this study 

enable reliable economic and energy savings analyses, leading to more informed decision-

making and maximizing the impact of ECM implementation. 

4.1 Introduction 

Energy conservation is a critical component of environmental control policy and is 

paramount in addressing climate change and ensuring long-term energy security. Asif 

[128] underscores the role of energy conservation and management in the sustainable 

energy transition, particularly in the building sector. Energy Conservation Measures 

(ECMs) are the cornerstone of efficiency programs, offering significant potential to reduce 

energy consumption, greenhouse gas (GHG) emissions, and associated costs while 

maintaining service levels. These reductions translate into enhancing social, economic, and 

environmental benefits, aligning with program goals [129]. 

The long-term effectiveness, financial viability, and successful implementation of 

ECMs hinge on accurately assessing their expected lifetime [130], energy delivery 

duration, and cost savings.  This lifespan can vary dramatically, from months for filter 

replacements to decades for building envelope upgrades  [131].  Accurately assessing ECM 

lifetimes is crucial for several reasons. First, it allows robust lifecycle cost (LCC) analyses 

for determining the cost-effectiveness of ECMs, the economic basis upon which one ECM 

is purchased, implemented, or prioritized over the other [132]. By factoring in the upfront 

costs, operational savings, and maintenance expenses of ECMs over their lifetimes, LCC 

analyses could be used to assess the economic attractiveness of ECMs [133]. Second, 

accurate lifetime estimates facilitate comparisons between different ECM options [134], 

empowering decision-makers to take action regarding prioritizing interventions with the 

most enduring benefits, program design and evaluation, program approval, goal setting, or 
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demand forecasting, among others. Third, ECM lifetime estimates are essential in 

addressing stakeholder needs. Different stakeholders have varying interests in ECMS. For 

example, federal, state, and local agencies are concerned with cost-effective 

implementation [135], utilities focus on avoiding energy and capacity costs, consumers 

prioritize reduced energy bills [136], and society seeks to minimize GHG emissions and 

health impacts associated with energy production [137]. Measure lifetime evaluation caters 

to these diverse needs. 

Accurate ECM lifetime estimates are essential for optimizing lifecycle cost 

analyses, comparing retrofit options, and prioritizing investments. However, current 

methodologies for evaluating ECM lifetimes may lack consistency and 

comprehensiveness. This study addresses this gap by providing a critical review of the 

field. 

Specifically, this review will define and differentiate key terms related to ECM 

lifetimes, ensuring clear communication and understanding across stakeholder groups. 

This study also examines the factors influencing ECM lifetimes, such as material 

degradation, usage patterns, maintenance practices, and environmental factors. Finally, the 

study reviews seven established methodologies for estimating ECM lifetimes. This 

analysis details each method's implementation process, advantages, limitations, and 

appropriate applications. 

This review provides a comprehensive overview to equip stakeholders with the 

knowledge necessary to select and implement the most effective ECM lifetime evaluation 

methodology for their needs. 

4.2 Definition of Measure Lifetime 

To understand measure lifetimes, it is essential to understand what measures 

(ECMs) are. ECMs could be equipment such as an energy-efficient refrigerator, a building 

envelope installation such as windows and doors, automation devices such as thermostats 
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and lighting controls, or an operational practice (occupant behavior changes and education) 

such as fully shutting the door. 

ECM lifetimes may be defined in many ways. One way of defining measure 

lifetime is in terms of what is known as the effective useful life (EUL) [138]. The EUL is 

the estimated length of time during which ECMs are expected to remain in effect and still 

have the potential to yield electricity or energy savings [139]. Hoffman et al. [140] define 

EUL as the median length of time an installed measure performs its function and yields 

energy savings. Another way of looking at the median length of time is to think of it in 

terms of the period for which half of the measures of the same kind will remain in use and 

half will have stopped functioning for a given sample installation [141]. By defining EUL 

this way, both functioning and non-functional installations are recognized, unlike the so-

called age-at-replacement definition, which is based on opinion surveys and ignores the 

population of equipment still in use [142]. 

Without understanding the definition of EUL in the preceding paragraph, it would 

seem that the lifetime of specific categories of measures, such as building envelope or 

insulation measures, are not adequately captured. These measures do not stop functioning 

as some electrical/mechanical equipment or baseload appliances do but reduce their 

expected functionality due to infiltration, leakage, or degradation. The concept of measure 

lifetime can become increasingly intricate for such measures, as multiple factors influence 

it [143], such as the current infrastructure in which the measure is installed, the quality of 

the measure, and evolving technology standards. The lifetimes of retrofits may differ based 

on these factors and might not consistently adhere to the conventional concept of EUL. 

To clarify the scope of the EUL definition, two components are provided: the 

technical life and measure persistence. The technical life refers to the average length of 

time that the measure is operational [140]. It is based on engineering tests under standard 

operating conditions. Therefore, any unfavorable condition or unrecommended use of the 

measure, such as those related to climate, maintenance, and installation, could affect its 

technical life [131]. Measure persistence measures the actual time that the ECMs last [144], 
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considering numerous factors. The factors affecting measure persistence vary depending 

on the building type or primary use. [141] provides some of the frequently encountered 

factors, as summarized in Table 4.1 below. 

Table 4.1 Factors Influencing Measure Persistence [141] 

Residential Sector Programs and 

Measures 

Commercial and Industrial Sector 

Programs and Measures 

1. Changes in ownership 

2. Maintenance practices 

3. Changes in equipment use 

4. Behavioral changes 

5. Occupancy changes 

6. Inappropriate installation of 

equipment 

7. Manufacturer performance 

estimates which do not reflect in-

field operating conditions. 

1. Business turnover 

2. Remodeling 

3. Varying maintenance 

4. Operating hours and conditions 

5. Inappropriate installation of 

equipment 

6. Manufacturer performance 

estimates that do not reflect in-field 

operating conditions 

 

Since the factors above affect the measure lifetime and the savings that could be 

derived from the measures, this introduces another consideration known as savings 

persistence. Savings persistence has to do with measure performance and how it changes 

over the measure lifetime [140], reflecting both a decrease (“decay” or “degradation) and 

an increase in savings. Goldberg et al. [145] define savings persistence as the percent 

change in expected savings due to changed operating hours, human behavior and 

interaction factors, and/or degradation in equipment efficiency relative to the baseline 

efficiency option. While measure and savings persistence may appear to be the same in 

that both consider changes in savings, they are not [146]; the latter quantifies the percentage 

of change in savings. 
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Notwithstanding the nuances of the EUL definition, some ECMs may not fit in any 

of the components of EUL, such as educating building occupants about lifestyle and 

behavioral changes that directly impact energy consumption, have measurable savings, and 

are cost-effective. Encouraging behavioral ECMs, such as turning off lights when not in 

use, utilizing natural daylighting when possible, adjusting thermostat settings for optimal 

comfort and energy savings, or unplugging appliances and electronics that are not in use, 

may not have an easy lifetime estimate that could be used in lifecycle costing as 

justification for an energy efficiency investment, but work best when implemented together 

with active (or technological) ECMs. 

A term known as the remaining useful life (RUL) applies to measures that must be 

retrofitted or replaced. The RUL is an assumption of how many more years the existing 

unit to be retrofitted or replaced would have lasted. The RUL is the amount of time left for 

an equipment or installation to perform its valuable functions before it is no longer effective 

[147]. The RUL is generally assumed to be a third of its EUL [148]. 

Another term used to describe measure lifetime is the “service life,” which the 

International Organization for Standardization (ISO) defines as the period after installation 

during which a facility or its components meet or exceed the performance requirements 

[149]. There are several related terms to this which provide a more precise definition of 

measure lifetime. One such precise and widely used definition is the reference service life 

(RSL), which is the service life of a product (measure) under a specified or reference set 

of in-use conditions. As noted by ISO, the reference in-use conditions could be based on 

data gathered through equipment testing or recorded from actual performance or service 

life data. RSL may become the basis for estimating the service life of the same measure 

under different in-use conditions, otherwise known as the Estimated Service Life (ESL). 

Some factors that determine the RSL of a measure are indoor and outdoor environments, 

predicted maintenance, and the product's design, among others [150]. Three main 

approaches are recognized to estimate the RSL of a building component [150]. The first 

approach is rooted in engineering principles, focusing on structural integrity and material 
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fatigue over time. The second approach considers factors such as component quality, 

design level, work execution, and environmental conditions to modify the RSL to provide 

an ESL. The third approach relies on empirical data, which, while accurate, can be 

resource-intensive. 

4.3 Methodologies for Estimating Measure Lifetime – Explanation, Strengths, 

Weaknesses, and Applications 

Several methodologies for estimating measure lifetimes exist, but no single, 

universally accepted methodology exists. Instead, researchers draw from a diverse toolbox 

of methodologies, each offering unique strengths and limitations. These sources include 

statistical analyses, interviews, manufacturer specifications, industry standards, field 

surveys, accelerated aging tests, computer simulations, and expert opinions. Often, these 

methods work in tandem, with data from one source strengthening the validity of estimates 

derived from another. For instance, field surveys may incorporate expert judgment, 

survival studies may combine manufacturer data with field observations, and expert 

opinions may rely on industry standards and assumptions. 

4.3.1 Survival Studies or Survival Analysis 

Survival studies, among various statistical methods available, are commonly 

utilized to estimate the anticipated lifespan of events (measures) [151]. Depending on 

whether researchers derive new insights from existing data or utilize published survival 

studies in their investigations, these studies can serve as either primary or secondary data 

sources. 

Survival analysis, also known as time-to-event analysis, is a stochastic model based 

on probability theory and statistical methods [152] that model the relationship between 

inputs and outputs using mathematical functions that best fit the given data [153]. 

Researchers across fields, including health and the sciences, leverage survival functions to 

predict survival probabilities and assess covariate impacts. Even though survival analysis 

has been widely applied in clinical research and epidemiology, there are diverse fields 
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[154] exploring the utility of survival analysis. A few of the fields where survival analysis 

has been utilized include the insurance industry for estimating when a claim might be 

expected or when a policy might become invalid [155], [156], in asset management for 

calculating depreciation and value of an asset [157], or in engineering for estimating the 

reliability of an equipment or installation to know when maintenance or replacement might 

be due [158]. As with most statistical methods, survival studies are data-driven and rely 

heavily on the availability of data and the nature of the data [159]. 

Survival analysis offers several advantages, with one notable benefit being the 

utilization of parametric models, such as the Weibull distribution. In this statistical 

framework, the distribution of probability variables is explicitly defined, and assumptions 

are made about the parameters governing the data [160]. These parameters encapsulate 

essential characteristics of the distribution. Unlike non-parametric methods, which make 

minimal assumptions, parametric models exhibit high efficiency and flexibility, adapting 

to various scenarios. They allow precise estimation of parameters, even when dealing with 

relatively small sample sizes – a practical advantage in scenarios where large samples are 

unattainable or resource-intensive [160]. 

While these models offer precision, their reliance on strong assumptions warrants 

careful consideration during application. A crucial challenge is selecting the most 

appropriate probability distribution for accurate survival data modeling. Misspecification 

of the distribution can lead to spurious inferences and unreliable results. Researchers must 

meticulously evaluate the underlying assumptions of candidate distributions and ensure 

alignment with the characteristics of the observed survival times [161]. 

In the context of ECM lifetime, survival analysis has been applied to analyze the 

time-to-failure or degradation patterns across different product groups or categories of 

measures, integrating various types and characteristics of lifetime data. To estimate the 

lifetimes of residential appliances (central air-conditioners, heat pumps, furnaces, boilers, 

water heaters, room air-conditioners, refrigerators, and freezers), Lutz et al. [162] 

leveraged a unique dataset combining national survey data in a survival analysis. This data 
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included historical shipment information from appliance manufacturers and in-use 

appliance stock data obtained from the U.S. Energy Information Agency's Residential 

Energy Consumption Survey (RECS 1990-2005) and the Census Bureau's American 

Housing Survey (AHS 1991-2007). The U.S. Department of Energy (DOE) has embraced 

the methodology described by Lutz et al. (2011) for the lifetime estimation of appliances. 

This is reflected in DOE’s utilization of the approach within multiple technical support 

documents (TSDs) about various household appliances [163]. Furthering the application 

of survival analysis, Northeast Utilities conducted a measure retention study in 2001 to 

refine the estimated lifetimes of interventions within their residential weatherization 

program [164]. The study surveyed 849 households to collect data on installing and 

removing specific measures, including CFL bulbs, torchiers, refrigerators, faucet aerators, 

low-flow showerheads, water heater wraps, and furnaces. The data were then analyzed 

using various survival function models to determine their lifespans. 

4.3.2 Manufacturers’ Data 

Manufacturers’ data come in many forms and may span different phases of a 

product’s life cycle, including conceptualization, requirements analysis (what the product 

needs to achieve), design and engineering, production, operation, maintenance, and 

disposal [165]. However, this study is interested in the phases of the product lifecycle: 

operation, maintenance, and disposal, all of which help estimate the product’s useful life. 

A few ways product manufacturers provide helpful life data for their products are 

environmental product declaration (EPD) documents or warranty sheets. Manufacturer 

lifetime data are based on life test data, which assume that the minimum design life of a 

component of the product should be the same as the useful life of the product [166]. Life 

testing, where components are stressed to simulate real-world use and predict failure rates, 

is an essential tool for manufacturers because the failure rates can be used to determine the 

critical lifetime prediction design parameters and, subsequently, to provide warranty or 

guarantee on products or product components [166]. A shortcoming of this methodology 
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is that life tests often occur under controlled environments while products encounter varied 

stresses during actual use. 

Manufacturers of specific products may formulate other methodologies to ascertain 

the anticipated lifespans of their products. An illustrative instance pertains to LED 

products, wherein manufacturers consistently derive projections of product longevity based 

on the duration required for LED products to diminish to 70% of their initial lumen output 

after specified hours of use [167]. For example, an L70 LED rated at 25,000 hours signifies 

that the LED will maintain at least 70% of its original brightness for 25,000 hours of 

operation [168]. However, while lumen intensity provides a reasonable benchmark for 

LED lifetime, it neglects the potential for failure in other critical components, especially 

those that power the LEDs, which can significantly impact its overall useful life. 

While manufacturer data may not be directly utilized as the sole source for lifetime 

estimation, it is a valuable foundation for more robust methodologies. Manufacturer data 

is often integrated with other techniques, such as survival functions, clustering analysis, 

and data regression, to enhance the reliability of lifetime estimates. For instance, research 

by Lawrence Berkeley National Laboratory (LBNL) on appliance lifetime estimation [162] 

and Technical Support Documents (TSDs) by the U.S. Department of Energy [169] 

employed manufacturer data as a springboard for further analysis. This practice elevates 

manufacturer data to the status of primary data within the context of these studies. 

4.3.3 Industry Standard 

Industry-standard lifetime data for energy conservation measures originates from 

stakeholder groups or professional organizations with specialized knowledge and vested 

interests in specific industries. These organizations establish industry standards, which the 

U.S. Department of Energy (DOE) defines as the widely accepted practices or 

specifications adhered to by industry members [170]. Developing these standards typically 

involves a rigorous, systematic process to ensure validity and reliability. Industry standards 

are crucial benchmarks and reference points for professionals when deciding energy 
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conservation measures. Notably, numerous U.S. organizations contribute to developing 

these valuable standards. 

Examples of U.S. Organizations Developing Industry Standards include: 

• American National Standards Institute (ANSI): ANSI administers and coordinates 

the U.S. private sector's standardization system. While it doesn't develop standards, it 

assesses and approves standards created by other organizations [172]. This role is 

crucial in ensuring consistency and national recognition of industry standards. 

• The American Society of Heating, Refrigeration, and Air-Conditioning Engineers 

(ASHRAE): ASHRAE is a prominent organization that develops industry standards 

specifically targeted towards building systems, energy efficiency, indoor air quality, 

refrigeration, and sustainability within the HVAC&R industry [171]. Their standards 

are vital in promoting energy-efficient practices within the built environment. 

• The National Institute of Standards and Technology (NIST): NIST, a part of the 

U.S. Department of Commerce, provides crucial support for the development and use 

of standards across various sectors [172]. While not directly developing industry 

standards for energy conservation measures, NIST's role in promoting standardization 

practices benefits various industries seeking to establish reliable benchmarks. 

While industry standards developed through rigorous scientific methods offer a 

reliable source for EUL data, other stakeholder groups may also contribute valuable 

insights. These groups may utilize methodologies that differ from the established, 

repeatable approaches mentioned earlier. Despite potential limitations in their 

methodology, these stakeholder-driven standards can yield surprisingly accurate results, 

often aligning with estimates from more established sources. 

For instance, a Massachusetts study interviewed contractors to gather information 

on the EUL of commercial gas heaters [167]. The study focused on when equipment 

reached the end of its useful life due to age or unreliability rather than simple breakage. 
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This approach yielded a mean estimate of 19 years and a median of 18 years, closely 

matching the prevailing EUL of 18 years for commercial furnaces listed in the 

Massachusetts Technical Reference Manual [173]. The contractor estimates were notably 

lower than the 25-year EUL provided for commercial boilers in the same document. 

This example highlights the potential value of considering stakeholder input, even 

when their methodologies differ from established standards. The study also reveals the 

factors influencing early equipment replacement decisions, with equipment age (67%), 

high repair costs (53%), safety concerns (27%), and reduced performance (13%) being the 

most prominent reasons cited by contractors. 

Utilizing industry-standard lifetime data for energy conservation measures offers 

several compelling advantages. Firstly, established standards can significantly reduce the 

time and resources required to estimate measure lifetimes [174].  This is particularly 

beneficial when dealing with a multitude of measures, as pre-defined values eliminate the 

need and cost [130] for extensive individual assessments.  Secondly, standardized data 

contributes to cost efficiency by minimizing the need for specialized testing or complex 

data collection procedures [175].  Furthermore, industry standards promote increased 

productivity by streamlining the process of estimating measure lifetimes, allowing 

researchers and professionals to dedicate their expertise to other vital aspects of energy 

conservation initiatives. 

Beyond these practical benefits, industry standards serve as a foundation for 

regulation within an industry. Establishing a common set of reference point standards helps 

ensure consistency in how measure lifetimes are defined and evaluated [176].  This fosters 

transparency within the industry, allowing stakeholders to understand expected equipment 

lifespans clearly. 

Industry standards constitute valuable sources of secondary information on 

measure lifetimes for various energy efficiency studies, including cost-effectiveness 

studies and energy audits. A prominent example is the ASHRAE suite of resources, 



 

84 
 

including the HVAC Service Life Database and the ASHRAE Handbook – HVAC 

Applications [177].  These resources provide readily available reference points for the 

expected lifespans of various HVAC units. 

In addition to standardized data, information from non-standardization bodies can 

also be beneficial. Trade organizations, such as the Air-Conditioning, Heating, and 

Refrigeration Institute (AHRI) and the National Association of Home Builders (NAHB),  

often research and compile data on equipment lifespans. For instance, a comprehensive 

telephone survey by the NAHB's Economics Group, encompassing manufacturers, trade 

associations, and researchers, yielded valuable data on the life expectancies of various 

home components [178]. 

4.3.4 Field Survey/Testing 

Field surveys or testing involve gathering real-world data on the use and 

performance of equipment or installations. This data can then be used to infer or predict 

how similar equipment or installations would perform in other settings [179]. When 

existing data proves inadequate, field surveys emerge as a powerful tool for gathering 

primary information [180]. 

Several methods exist for collecting data in a field survey or test. One method 

involves in-person interviews or survey instruments (questionnaires). These two – 

interviews and questionnaires – may be combined through a hybrid approach where a self-

administered questionnaire (e.g., paper-based) may be left with the respondent after a brief 

introductory interview [181]. Field surveys could also employ remote data collection, 

eliminating the need for being physically present. In both cases, either interviews, 

questionnaires, or both (hybrid) may be used. While field surveys are plausible means of 

estimating measure lifetimes, they can be enhanced by incorporating after-warranty failure 

data [182]. This approach can provide a more accurate estimation of lifetime distribution. 

However, the reliability of predicting long-term performance may decrease if data is 

collected too early in the test [183]. Lawless, Kalbfleisch, and Blumenthal [184] Highlight 
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the challenges in collecting and analyzing field reliability data, including missing 

information and reporting delays. These insights underscore the need for a comprehensive 

and meticulous approach to field surveys, including reviewing and analyzing historical data 

alongside the collected survey information. This would ensure that valid conclusions are 

drawn. 

The hybrid approach can be cost-effective while potentially boosting response 

rates. The choice between in-person and remote data collection methods depends on several 

factors. In-person surveys, like interviews, can lead to higher data quality as the interviewer 

can clarify questions and reduce misunderstandings. However, logistical costs associated 

with travel and personnel can be high, and interviewer bias may influence responses [185]. 

Remote surveys, on the other hand, offer advantages like reaching geographically dispersed 

samples and lower costs [186]. They also allow respondents to complete surveys at their 

convenience. However, these methods may require specific technologies and can be 

susceptible to technical issues on the respondents' end. 

Field surveys and testing have played a critical role in estimating the lifetimes and 

effectiveness of energy conservation measures (ECMs). McRae et al. [130] surveyed 

experts to estimate the average lifespan of various ECMs in the Pacific Northwest, 

highlighting the importance of such data for utility conservation programs. Suter and 

Shammin [67] conducted a field experiment demonstrating significant reductions in natural 

gas consumption with attic insulation, an example of an ECM intervention. Similarly, 

Ternes et al. [188] tested an advanced ECM selection technique,  providing valuable data 

for cost-effectiveness analysis of utility investments in residential gas conservation 

programs.  These studies demonstrate how field research has been utilized to understand 

ECM performance, lifespan, and program improvements. 

4.3.5 Accelerated Life Test 

Accelerated life tests (ALT) are an essential tool in estimating the lifespan of 

various products, with applications in many fields, including software reliability [189], 
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seed vigor [190], paper quality [191], and photovoltaic (PV) module performance [192]. 

These tests involve subjecting materials to harsh conditions, such as high temperature and 

humidity, to simulate the effects of long-term use in a short period [193]. It achieves this 

by simulating real-world wear and tear through controlled stresses and intensified 

conditions that accelerate their degradation [194]. For energy conservation measures, these 

stresses might translate to extreme temperatures for insulation materials or voltage 

fluctuations for power management systems. The methods used in these tests vary 

depending on the material. Still, they generally involve stress-accelerated aging [195] 

relationships to estimate how long the material will last under regular use. The results of 

these tests can provide valuable information on the quality, durability, and reliability of 

energy conservation measures and are often used for type approval testing, safety testing, 

and service life prediction [196]. 

ALT offers several advantages over traditional testing methods when estimating 

the lifetime of ECMs. While conventional life testing involves monitoring products under 

normal operating conditions for extended periods, ALT condenses this process, leading to 

faster failure times. This translates to significant savings in time and resources [197]. ALTs 

are also valuable for predicting potential failure modes in products that might take years to 

emerge under regular use, allowing for early design improvements and ensuring long-term 

reliability [198]. By leveraging diverse model and data analysis techniques, including 

physics-of-failure (PoF) and mechanistic approaches, alongside advanced Bayesian 

analysis methods [199],  ALT emerges as a vital tool in identifying materials or 

components prone to degradation under particular stresses, thereby facilitating enhanced 

product design and prolonged lifetime [200]. 

However, it is essential to note that ALT also has limitations. The stresses applied 

in ALT may not perfectly replicate real-world conditions. This can lead to underestimation 

or overestimation of the actual lifespan depending on the specific product and the chosen 

stresses [201]. This is particularly true for temperature stresses, which can accelerate 

failure mechanisms not observed in field life, necessitating a multiple-stress model [202] 
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and optimal decision variables [203] in ALT to improve accuracy. Moreover, ALT is 

limited in requiring clearly defined failure modes to test hypotheses and reliability 

prediction [204]. However, for products that degrade gradually without a clear point of 

failure, ALT may be less suitable. Accelerated Degradation Testing (ADT) can be more 

effective in such cases, as it predicts long-term performance and reliability without actual 

failures [205]. Caruso and Dasgupta [206] caution that the effectiveness of ALT or the 

accuracy of lifetime estimation through ALT depends on the chosen statistical models and 

analysis and interpretation of data [207]. Therefore, lifetime estimates from ALT are as 

good as the models and interpretations used. 

ALT has been applied to predict how long insulation materials last in buildings by 

understanding how they maintain thermal resistance over time, thereby ensuring energy 

efficiency in buildings [208]. Several studies have explored ALT for estimating the 

lifetimes of LED components under the impact of elevated temperatures and voltage 

fluctuations [209]. ALT has also been applied to simulate years of weathering in window 

components through exposure to intense UV radiation, high temperatures, and humidity 

cycles [210]. This helped to predict how well window coating and seals would perform in 

terms of insulation and solar heat gain coefficient (SHGC) over time [211], thereby 

estimating their lifetimes under operating conditions. 

4.3.6 Modeling and Simulation 

Modeling and simulation, as data-driven approaches, play a crucial role in 

predicting equipment lifetimes. They leverage statistical techniques to extract valuable 

insights from large datasets. Bahn et al. and Qudrat-Ullah [212], [213] demonstrate the 

broader use of data-driven models in energy systems – moreover, Seyedhosseini et al. [214] 

highlight the effectiveness of data-driven methodologies in predicting the remaining useful 

life (RUL) of ECMs. Further examples of modeling and simulation include using 

Clustering techniques to group ECMs with similar characteristics, facilitating the 

identification of patterns and trends in their lifespan [215]. Additionally, regression models 

can be constructed to predict RUL based on operational data such as energy consumption 
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patterns and environmental factors. These techniques can be further integrated with 

regression models to predict the RUL of system components based on operational data, 

such as energy consumption patterns and environmental factors [216]. 

Various sources can provide data for measure lifetime prediction models. 

Manufacturer specifications, historical performance data from implemented ECMs, and 

accelerated life tests are all valuable sources [217], [218]Warranty information, Mean Time 

Between Failures (MTBF) from field deployments, and degradation data from controlled 

experiments can also be valuable inputs. 

As with all data-driven models, the modeling and simulation approach may offer a 

more efficient and potentially more accurate alternative to real-world testing by combining 

multiple algorithms to enhance the prediction's robustness and accuracy [219]. This 

methodology allows scenario planning by simulating various operating conditions and 

environmental factors, providing valuable insights into the lifespan under diverse use cases 

[220]. Accurate lifespan estimates from models can also empower informed decision-

making regarding ECM selection, replacement schedules, and overall energy management 

strategies [174]. 

However, some possible drawbacks of the modeling and simulation approach 

include data gaps, inconsistencies, or errors, which can significantly impact the reliability 

of the estimates since the accuracy of model predictions heavily relies on the quality of 

input data [221]. Also, models can become complex, especially when considering multiple 

interacting factors, requiring specialized expertise to build and interpret [222]. This 

complexity is further compounded by the need to integrate various data and knowledge 

sources and manage uncertainty [223]. While machine learning models can be trained to 

generalize well across diverse conditions, their performance can still be limited in 

drastically different contexts [224]. 

Numerous studies have demonstrated the practical applications of data-driven 

modeling and simulation in estimating the measure lifetimes. Trappey et al. [225] 
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developed a lifespan forecasting approach for power transformers, while Musallam et al. 

[226] presented a method for estimating the RUL of power electronics. Zhe, Ghaoyou, and 

Qjan [227] focused on real-time RUL prediction for core components of mechanical and 

electrical equipment, achieving high accuracy. 

4.3.7 Expert Judgement 

Expert judgment is a methodology that involves eliciting knowledge from qualified 

professionals with extensive experience and credibility in a specific field [228]. In addition 

to having the requisite background in the subject area, they must be recognized by their 

peers or those seeking answers from them [229]. In estimating measure lifetimes, these 

experts would deeply understand the technologies, their installation practices, and the 

factors influencing their degradation over time. Their judgment becomes valuable data for 

decision-making when historical data might be limited or the technology is relatively new 

[230]. The Delphi technique, which involves a structured group process, is a valuable tool 

for eliciting and combining expert opinions [231]; it can also be used to improve the 

reliability of estimates obtained from a consensus of experts [232]. 

As mentioned in the preceding paragraph, expert judgment is a valuable tool when 

historical data is limited or technology is new, as it can provide insights into potential risks 

and impacts [233]. For instance, historical data might not be available when implementing 

a cutting-edge, energy-efficient window design. Experts can leverage their experience with 

similar technologies and materials to estimate the expected lifespan. Furthermore, expert 

judgment leads to the incorporation of diverse knowledge [234]. A single expert might 

possess significant knowledge, but a group can offer an even richer picture. By bringing 

together experts from various backgrounds, one can consider factors affecting measure 

lifetimes. Expert judgment also allows for incorporating uncertainties and adapting 

estimates in the light of emerging technologies or unforeseen circumstances, which make 

it challenging to predict measure lifetimes solely based on historical data [235]. 
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Expert judgment, however, is not immune to bias and subjectivity, as it can be 

influenced by the same cognitive, perceptual, and motivational biases as laypeople since 

experts may struggle to go beyond the limits of their observable expertise [236]. The “bias 

blind spot” further complicates matters, as individuals tend to recognize bias in others but 

not themselves [237]. Also, even within a field, there can be varying levels of expertise 

[238]. This inconsistency is not necessarily due to a lack of knowledge, as experts may be 

able to focus on relevant information and exhibit greater consistency and consensus [239]. 

To improve the accuracy of expert advice, it is recommended to use broadly defined expert 

groups, structured question protocols, and feedback [228]. Moreover, if the process of 

eliciting expert judgment isn't well documented, it can be challenging to understand the 

rationale behind the estimates [236], [240]. This lack of transparency can make it 

challenging to assess the reliability of the results. Another drawback of this methodology 

is that consulting with experts can be time-consuming and expensive [241]. This is 

particularly true in complex fields such as business data analytics, where the need for 

expertise is high [242]. 

Expert judgments have been utilized in various ways to estimate and measure 

lifetimes. Katenbacher and Attari [243] and Jaber, Mamlook, and Awad [244] highlight the 

role of expert heuristics and knowledge-based systems in improving energy literacy and 

evaluating residential energy consumption programs.  Expert elicitation has provided 

valuable insights into future energy technologies, trajectories, and prospects [245]. 

However, the effectiveness of these methods can be influenced by factors such as survey 

design, expert selection, and confidence levels, which need to be carefully considered in 

the estimation process [245]. 

Table 4.2 Summary of Measure Lifetime Estimation Methodologies 

Methodology Description Advantages Drawbacks Applications Other 

Considerations 

Survival 
Analysis 

Analyzes 
historical data 
(e.g., failure 
times) to 

- Uses 
statistical 
models for 

- Requires 
careful 
selection of 

- Estimating 
the remaining 
useful life 

- Requires 
expertise in 
statistical 
modeling. 
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estimate 
lifespans and 
predict failure 
patterns. 

precise 
estimation. 
- Applicable 
to various 
data formats 
(e.g., 
censored 
data). 

probability 
distributions. 

(RUL) of 
equipment. 
- Analyzing 
degradation 
patterns. 

Manufacturer 
Data 

Provides 
starting point 
for lifetime 
estimates based 
on 
manufacturer 
specification 

- readily 
available.  
- Often used 
as a starting 
point. 

- May not 
reflect real-
world 
operating 
conditions. 
- Limited to 
specific 
product lines. 

- Initial 
estimates 
- 
Comparisons 
with industry 
standards. 

- Should be used 
cautiously 
- Integrate with 
other techniques 
for better 
accuracy 

Industry 
Standards 

Provides 
reliable 
benchmarks for 
measure 
lifetimes 
developed by 
professional 
organizations. 

- Provides 
reliable data. 
- Offers a 
standard 
reference 
- Saves time 
and 
resources. 

- May not 
capture all 
factors 
affecting 
lifespan. 
- Limited to 
specific 
industries or 
regions. 

- Initial 
estimates 
- Project 
planning 

- Consider 
applicability to 
specific project 
contexts. 
- Consider 
incorporating 
stakeholder 
input 

Field 
Surveys/Testing 

Gathers real-
world data on 
equipment 
performance 
through 
interviews, 
questionnaires, 
or in-
person/remote 
surveys. 

- Provides 
insights into 
actual 
operating 
conditions. 
- Can be 
combined 
with after-
warranty 
failure data. 

- Time-
consuming 
and resource-
intensive. 
- May be 
subject to 
respondent 
bias. 

- Valuable for 
new 
technologies 
- Improving 
existing 
estimates by 
validating 
manufacturer 
data and 
industry 
standards. 
- Gather data 
for the 
project. 
- Understand 
user 
experience 

- Carefully 
design survey 
instruments and 
sampling 
methods. 
- Can be 
enhanced by 
after-warranty 
failure data. 
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Accelerated 
Life Tests 
(ALTs) 

Simulate long-
term wear and 
tear quickly by 
stressing 
materials under 
harsh 
conditions. 

- Saves time 
and 
resources. 
- Predicts 
potential 
failure 
modes. 

- May not 
perfectly 
replicate real-
world 
conditions. - 
Requires 
expertise to 
design and 
interpret 
results. 
- Limited 
applicability 
for complex 
systems 

- Estimating 
RUL for new 
technologies. 
- Comparing 
options 
- Evaluating 
the impact of 
extreme 
conditions. 

- Ensure test 
conditions 
reflect realistic 
use case 
scenarios. 

Data-Driven 
Modeling & 
Simulation 

Utilizes 
statistical 
techniques and 
large datasets to 
predict 
lifetimes. 

- Efficient 
and 
potentially 
more accurate 
than other 
methods. 
- Enables 
scenario 
planning for 
various 
conditions. 

- Relies 
heavily on 
data quality. 
- Models can 
become 
complex 
- May require 
specialized 
expertise. 

- Optimizing 
ECM 
selection, 
replacement 
schedules, 
and energy 
management 
strategies. 
- Identifying 
trends and 
patterns in 
historical 
data. 

- Carefully 
select data 
sources and 
validate model 
assumptions. 
- Machine 
learning models 
may not 
generalize well 
in new contexts. 

Expert 
Judgment 

Elicits 
knowledge 
from qualified 
professionals 
with extensive 
experience in 
the field. 

- Valuable 
when 
historical data 
is limited, or 
technology is 
new. - 
Incorporates 
diverse 
knowledge 
and 
perspectives. 

- Prone to 
bias and 
subjectivity. - 
Requires 
careful design 
of the 
elicitation 
process. 

- Estimating 
lifetimes for 
new 
technologies. 
- Filling gaps 
in incomplete 
data sets. 

- Expertise level 
and selection 
process are 
essential. 
- Utilize 
structured 
techniques (e.g., 
Delphi method) 
to minimize 
bias. 
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4.4 Measure Lifetime Data Sources and Examples 

Obrecht et al. [248] identifies several data sources for obtaining RSL data for 

ECMs. These sources can be categorized into three main groups. The first group is industry 

standards and guidelines, such as Product Category Rules (PCR) and Environmental 

Product Declaration (EPD) documents, which provide standardized data for specific 

product categories. Additionally, existing applicable standards often define service life 

expectations for ECMs within a particular industry or region. The second group comprises 

manufacturer information and client requirements. Product and manufacturer information, 

including technical specifications and installation manuals, can offer insights into expected 

ECM lifetimes. Client requirements and current practices specific to a project may also 

inform service life assumptions. The third group includes databases and literature. Publicly 

available national or commercial databases on building components and materials can be 

valuable resources. Research publications from industry groups and scientific communities 

can provide data and insights on ECM lifetimes. Furthermore, LCA software packages for 

building design may include conventional service life data for various building 

components. 

Appendix A provides step-by-step instructions on utilizing two measure lifetime 

data sources: an online database for PCR/EPD documents of certain products and a public 

database of HVAC service life maintained by ASHRAE. 

4.5 Other Considerations 

4.5.1 Factors Affecting Service Lives of Measures 

Accurate estimates of measure service lives are essential for reliable economic and 

energy savings calculations. However, several factors can influence the actual functional 

life of an ECM compared to its estimated service life or warranty period. 

While manufacturer warranties provide a minimum service life guarantee, ECMs 

may often function for extended periods. These additional years of functionality can be 

considered as a "persistence allowance" when estimating overall service life [141]. The 
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EPD framework may not offer standardized methods for examining the service life decay 

of specific ECMs, such as the decline in thermal performance of insulation materials over 

time[246].  For example, Lee, Lim, and Salleh [247] identify factors like dust 

accumulation, moisture, corrosion, and oxide films that can reduce the effectiveness of 

radiant barriers. Similarly, other ECM categories may experience degradation due to 

environmental factors or lack of maintenance. 

Therefore, it is essential to consider the specific environment where ECMs are 

installed when estimating service lives rather than relying solely on the provided data 

sources. 

4.5.2 Deriving Representative Lifetime Values for ECMs 

Varied data sources often yield different lifetime values for the same measure. 

Various statistical techniques can be employed to address this challenge and establish a 

single, representative value. A prominent method is the Weibull distribution, known for its 

adaptability and effectiveness with limited data samples [248].  A comprehensive study by 

Lawrence Berkeley National Laboratory [162] exemplifies the application of this approach 

to estimate the service life of appliances (e.g., refrigerators). 

Similarly, Technical Support Documents (TSDs) associated with specific 

appliances reference this methodology. For instance, TSDs for lighting systems or HVAC 

equipment might utilize statistical analysis of large datasets to derive representative 

lifetime values that account for inherent data variability. By adopting these statistical 

approaches, comprehensive datasets can be harnessed to establish unified and reliable 

lifetime values for ECMs, enhancing the accuracy of energy savings calculations. 

4.6 Chapter Summary 

Accurate estimation of measure lifetimes is fundamental for reliable economic and 

energy savings calculations when implementing Energy Conservation Measures (ECMs). 

This review explored a diverse set of methodologies for measure lifetime estimation, each 

offering unique advantages and considerations. 
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Survival analysis as a methodology has applications in many fields when estimating 

failure times, and manufacturer data provides valuable starting points, but it may not fully 

capture real-world conditions. Field surveys and testing offer detailed insights but can be 

time-consuming. Accelerated life tests (ALTs) present a faster alternative, although their 

accelerated aging process might not perfectly mimic real-world wear and tear. 

Data-driven modeling and simulation emerged as powerful tools for measure 

lifetime estimation. These methods leverage statistical techniques and large datasets to 

deliver efficient, potentially more accurate predictions. They also empower scenario 

planning by simulating various conditions and informing decisions on ECM selection, 

replacement schedules, and overall energy management strategies. However, data quality 

remains paramount for model accuracy, and complex models might require specialized 

expertise. 

Expert judgment plays a complementary role, mainly when historical data is limited 

or technology is new. Experts bring valuable insights and diverse knowledge, allowing for 

adaptation to uncertainties and emerging technologies. However, careful design of the 

elicitation process is crucial to minimizing bias and ensuring reliable estimates. 

Beyond estimated service life or warranty periods, the review emphasized the 

importance of considering additional factors. A "persistence allowance" can account for 

extra years of functionality, while environmental factors where ECMs are installed can 

significantly impact their lifespan. This highlights the need to move beyond generic data 

sources and choose information relevant to the specific ECM under evaluation and the 

project context. Understanding the underlying assumptions and methodologies used to 

generate the service life information is also helpful. In cases where limited data is available, 

combining information from multiple sources and applying engineering judgment can be 

necessary to establish a reliable lifetime estimate. 

In conclusion, a comprehensive approach that combines various methodologies is 

recommended for accurate measure estimation. Careful consideration of data quality, 
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environmental factors, statistical techniques, and the project's specific context is essential 

for reliable economic and energy savings analyses. Ultimately, this leads to more informed 

decision-making regarding ECM implementation.  
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CHAPTER 5  

ECONOMIC ANALYSIS FOR MEASURE LIFETIMES EXCEEDING 

30 YEARS 
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This chapter builds upon the previous chapter and provides a scenario-based economic 

analysis of long-lived measures (i.e., measures with a lifetime beyond 30 years). Using the 

Weatherization Assistance Program (WAP) maximum default measure lifetime, currently 

30 years, the study demonstrated a methodology to estimate post-thirty-year economic 

projection. It analyzed different scenarios of how extending the measure lifetime would 

impact the savings-to-investment ratio (SIR). This chapter is being prepared as an article 

for submission to a journal. 

Acknowledgments: This work was sponsored by the U. S. Department of Energy’s Office 

of State and Community Energy Program under contract DE-AC05-00OR22725 with UT-

Battelle, LLC. 

Chapter Abstract 

Extending the default lifetimes of Energy Conservation Measures (ECMs) in energy 

efficiency programs to reflect their longevity presents opportunities to enhance energy 

savings and improve cost-effectiveness in energy efficiency programs. Measure lifetime 

directly influences economic analyses, including savings-to-investment ratios (SIRs), and 

is a critical parameter for prioritizing ECMs and allocating program resources. This study 

explores methodologies for assessing the economic viability of ECMs with lifetimes 

exceeding 30 years, focusing on projecting fuel price indices (FPIs), applying discount 

rates, and conducting sensitivity analyses. Through a detailed evaluation of extrapolation 

techniques, this study highlights the challenges associated with uncertainties in long-term 

projections, such as reliance on averaged escalation rates for extended FPIs and the 

compounded effects of discounting. Comparative analyses reveal the diminishing marginal 

benefits of extending ECM lifetimes, where the percent increase in SIR slows as measure 

lifetimes exceed 40, 50, or even 100 years. By addressing both the potential benefits and 

inherent uncertainties of extended lifetimes, this study offers actionable insights for 

refining economic evaluation methodologies. The findings underscore the importance of 

robust data frameworks, enhanced projection techniques, and balanced program designs 

that account for both short-term and long-term objectives. These approaches enable energy 
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efficiency programs to make more informed decisions, optimize resource allocation, and 

achieve broader social, economic, and environmental goals. 

5.1 Introduction 

Energy conservation measures (ECMs) are foundational to energy efficiency 

programs, offering substantial potential for reducing energy consumption and associated 

costs over their operational lifetimes. However, the economic evaluation of energy 

efficiency programs is often constrained by the measure lifetimes used in these 

assessments. For instance, the methodologies employed within the Weatherization 

Assistance Program (WAP) limit economic analyses to a maximum measure lifetime of 30 

years. While WAP does not explicitly restrict default measure lifetimes to 30 years, its 

economic analyses rely on fuel price indices and discount factors documented in various 

editions of the National Institute of Standards and Technology (NIST) Handbook 135 and 

its annual supplements2 [249], [250]. These projections are typically available for 30 years. 

Despite this limitation, many ECMs – such as durable building envelope components – can 

remain effective for over 50 years or for the entire lifespan of the buildings in which they 

are installed [251]. 

Using WAP measure lifetime as a case study, this study builds upon the insights 

from Chapter 4, which explored methodologies for estimating measure lifetimes to 

evaluate the economic implications of extending ECM lifetimes beyond the 30-year 

threshold. Specifically, it investigates how such extensions influence key economic 

metrics, focusing on the savings-to-investment ratio (SIR), a critical determinant for ECM 

prioritization and funding within WAP. Through scenario-based demonstrations, this 

analysis assesses the economic viability of longer-lifetime ECMs under various 

assumptions about energy prices, discount rates, and maintenance costs. 

 
2 The NIST Handbook and its annual supplement are published to facilitate the implementation of the Federal Energy 
Management Program (FEMP) Life Cycle Cost (LCC) rules. Handbook 135 explains the LCC method, describing the 
assumptions and procedures to follow in performing evaluations. The annual supplements (NIST-85-3273-X) to 
Handbook 135 provide the current discount rate, discount factors, and energy escalation factors used for conducting an 
LCC analysis in accordance with FEMP rules. 
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This study also explores the implications of extending ECM lifetimes, considering 

the trade-offs between increased uncertainty in long-term economic projections and the 

potential for enhanced cumulative energy savings. By addressing these aspects, the 

findings aim to guide program administrators, policymakers, and other stakeholders in 

evaluating the feasibility and impact of incorporating extended ECM lifetimes, thereby 

supporting more effective and equitable energy efficiency initiatives. 

5.1.1 History of Default Measure Lifetime Values Used Within WAP 

The Department of Energy (DOE) has historically adhered to default measure 

lifetime values established during the development of the Weatherization Assistant 

software. These default lifetimes serve as a baseline for assessing the cost-effectiveness of 

ECMs within the Weatherization Assistance Program (WAP). Over the years, DOE has 

updated these lifetimes to reflect advancements in ECM technologies and evolving industry 

standards. Notably, revisions were made through Weatherization Program Notice (WPN) 

23-06 [252] and WPN 19-4 [253], which introduced new lifetime values based on 

contemporary research and technological progress. 

The Weatherization Assistant software is critical for supporting state and local 

weatherization agencies implementing WAP. It encompasses two distinct energy audit 

tools: the National Energy Audit Tool (NEAT) for site-built single-family homes and the 

Manufactured Home Energy Audit (MHEA) for mobile or manufactured homes [254]. 

These tools provide a systematic approach to measure selection and cost-effectiveness 

analysis, ensuring that WAP-funded projects achieve maximum energy savings and value 

for participating households. 

The evolution of the Weatherization Assistant software dates back to 1988 and 

reflects decades of development and refinement (Figure 5.1). Initially designed with a 

limited library of ECMs and associated default lifetimes, the software has been 

continuously updated to include new measures, accommodate technological advances, and 

reflect an improved understanding of measure performance over time. For example, early 

versions of NEAT and MHEA user manuals [280], [281], [282] documented measure 
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lifetime values based on the best available data at the time. Research publications, such as 

Dalhoff [258], further contributed to establishing default values. 

 
Figure 5.1. Evolution of the Weatherization Assistant software. 

Subsequent updates to the software have expanded its capabilities, with the latest 

version –  Weatherization Assistant v8.9 – featuring an extensive library of ECMs and their 

corresponding default lifetimes. Empirical data, field experience, and advancements in 

energy efficiency technologies inform these lifetimes. Figure 5.1 provides a visual 

overview of the software's development history, highlighting key milestones in its 

evolution. The ongoing refinement of default lifetimes underscores the DOE’s 

commitment to ensuring that WAP remains effective and responsive to emerging 

technologies and household needs. 

The historical default measure lifetime values used in WAP since 1996, as found 

in various user manuals and WPNs, can be found in [252], [253], [280], [281], and [282]. 

5.1.2 Addressing Measures With Long Lifetime Values 

Each measure and package of measures implemented under WAP must generate 

energy cost savings over the measure's lifetime that when discounted to present value, 

equal or exceed the measure's cost. This evaluation relies on projections of future energy 
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prices using U.S. average or regional fuel price indices, which are computed annually by 

the National Institute of Standards and Technology (NIST) based on the most recent energy 

price forecasts from the U.S. Energy Information Administration (EIA). These projections 

are currently provided for 30 years, aligning with the maximum allowable ECM lifetime 

defined in Weatherization Program Notice (WPN) 23-06. 

Despite this constraint, certain ECMs are known to have service lives extending 

well beyond 30 years. For measures with such extended lifetimes, assessing economic 

viability requires an approach that accounts for their benefits beyond the standard 

projection period. Without proper adjustment, these measures' long-term energy savings 

and cost-effectiveness risk being undervalued. 

The Energy Independence and Security Act (EISA) of 2007 [259] extended the 

maximum service period for Federal Energy Management Program (FEMP) life-cycle 

costing (LCC) analyses from 25 to 40 years. To accommodate this change, the NIST 

Building Life Cycle Cost (BLCC) [260] program incorporated unofficial projections of 

energy prices for years beyond 30. Initially, these projections were simple extrapolations 

of the 30th-year growth rates [261]. However, starting in 2022, these projections 

transitioned to using the simple average growth rate of the last five years of available 

forecasts [262]. This shift aims to provide a more balanced estimate for out-year energy 

prices, though caution is advised when interpreting savings beyond the 30-year horizon. 

Given the inherent uncertainties associated with long-term projections, sensitivity 

analyses play a key role in testing various out-year assumptions. These analyses help 

evaluate how different assumptions about future energy prices impact the economic 

viability of ECMs with extended lifetimes. Subsequent sections provide detailed sensitivity 

analyses to address these challenges. 

5.2 Methodology 

The analysis conducted in this chapter builds upon established principles of 

economic evaluation for energy conservation measures (ECMs)). The methodology 
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integrates fuel price projections, discount rate application, sensitivity analysis, and 

extrapolation techniques to evaluate the impact of extending measure lifetimes beyond 30 

years on their economic viability. Key steps in the methodological framework are outlined 

below: 

5.2.1 Data Collection 

Fuel price indices (FPIs) and escalation rates were obtained from the 2022 and 2023 

Annual Supplements to NIST Handbook 135 [262], [263]. These data sets provided year-

by-year projections for natural gas and electricity prices for 30 years. For years beyond 30, 

extrapolated FPIs were calculated based on the average escalation rates observed in years 

26–30, as per guidelines from Kneifel and Lavappa [262]. Discount rates were sourced 

from the same NIST publications to ensure consistency with current WAP evaluation 

practices. 

5.2.2 Economic, Sensitivity and Threshold Analysis 

The savings-to-investment ratio (SIR) was used as the primary metric for assessing 

the economic viability of ECMs. The methodology incorporated constant terms (e.g., 

present value indices) and time-varying terms (e.g., cumulative discounted savings) 

derived from fuel price projections and discount rates for extended lifetimes. 

Sensitivity analyses were performed to evaluate the robustness of SIR calculations 

under varying scenarios of extended measure lifetimes using derived fuel price escalation 

rates and discount rates. The analyses tested how the extrapolation method for FPIs – such 

as using 5-year average escalation rates – impacted the SIR for measure lifetimes of up to 

100 years. Separate analyses were conducted for natural gas and electricity to reflect each 

fuel type's unique escalation trends and uncertainties. 

Threshold analyses assessed the conditions under which extending measure 

lifetimes would yield economic benefits. These analyses determined the minimum year-30 

SIR values required for ECMs to benefit from extended lifetimes. This was achieved by 
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calculating the incremental percent increase in SIR as a function of additional measure 

years, using equations detailed in Appendix B. 

5.2.3 Visualization and Interpretation 

Figures and tables were generated to illustrate the trends and findings from the 

analysis. For instance, FPIs for years 31–100 were plotted to highlight the differences 

between 2022 and 2023 datasets, while SIR percent increases were presented as a function 

of extended measure lifetimes. These visualizations facilitated the comparison of results 

across different scenarios and provided actionable insights into the economic trade-offs of 

longer-lived ECMs. 

The findings were contextualized within the WAP framework, highlighting the 

implications for program design, measure prioritization, and long-term energy savings. The 

results also informed recommendations for addressing uncertainties in fuel price 

projections and adapting WAP guidelines to accommodate measures with extended 

lifetimes. 

5.3 Results and Analysis 

5.3.1 Sensitivity Analysis of the Impact of Measure Lifetimes Exceeding 30 Years on 

the SIR 

The approach utilized in BLCC programs to support FEMP service periods of up 

to 40 years provides a valuable framework for extending the economic analyses of ECMs 

within WAP beyond the current 30-year threshold. However, this extension introduces 

significant uncertainties, mainly due to the reliance on extrapolated fuel escalation rates 

for years beyond 30. These rates are based on the average escalation trends from the final 

five years of projections (years 26–30) rather than being derived directly from modeled 

energy price projections by the U.S. Energy Information Administration (EIA). 

Consequently, the degree of uncertainty increases substantially for these distant years. 
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To address this issue, a sensitivity analysis was conducted to evaluate the economic 

implications of extending ECM lifetimes beyond 30 years. Following the 

recommendations of Kneifel and Lavappa [262], the analysis assessed whether the 

potential benefits of increased measure lifetimes – measured through higher savings-to-

investment ratios (SIRs) – justify the additional uncertainty. A series of equations was 

developed to project fuel price indices for future years and calculate changes in SIRs for 

ECMs with extended lifetimes. Detailed derivations of these equations are presented in 

Appendix B.  

The fuel price index (FPI) for x years beyond 30 years is calculated using: 

 ������� = ����� ∗ �1 + �̅!"-��$�, (1) 

where 

������� is the fuel price index for x years beyond 30 years, 

����� does NIST publish the fuel price index for year 30 and 

�̅!"-�� is the average of the escalation rates for years 26 through 30  

The escalation rate �% for any year & is determined as: 

 �% = '()*
'()*+,

− 1. (2) 

The SIR of a measure initially calculated for a 30-year lifetime is adjusted for an extended 

lifetime of 30 + . year using 

determined based on a 30-year lifetime. Accounting for a measure lifetime of 30 + x years, 

the percent increase in SIR of the measure can be expressed as 

%Increase in SIR =  (9:;
<(9:;

× ∑ ?@�A̅BC-:;
@�D EF ,�FH@   (3) 

where 

�I�� is the present value index for year 30, calculated as 
'():;

�@�D$:;; 
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J�I�� is the uniform present value for year 30, calculated as ∑ '()K
�@�D$K

��FH@ ; and 

L is the real discount rate. 

This sensitivity analysis was applied to both natural gas and electricity, using the 

economic parameters from the 2023 and 2022 Annual Supplements to NIST Handbook 

135 [262], [263]. These parameters provided the baseline data for examining how 

variations in fuel price indices and discount rates affect the economic viability of ECMs 

with extended lifetimes. The results of this analysis are discussed in the following 

subsections. 

Example 1: Using 2023 NIST FPIs  

Figure 5.2 presents the fuel price indices (FPIs) for natural gas and electricity as 

published in the 2023 NIST energy price indices and discount factors for life-cycle cost 

analysis [263]. For years 1–30, the FPIs are based on official NIST projections, while years 

31–100 represent extrapolated values derived from the average escalation rates observed 

in years 26–30. Specifically, the escalation rate for natural gas was 0.33%, indicating a 

gradual increase in prices, while the escalation rate for electricity was −0.45%, indicating 

a decline in prices. The extrapolated FPIs show significant deviations from the year 1–30 

trends, resulting in exceptionally high natural gas prices and exceptionally low electricity 

prices over extended periods. These projections underscore the uncertainties associated 

with long-term energy price forecasting, significantly beyond the range of official 

projections. 
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Figure 5.2. Estimated FPIs beyond 30 years based on 2023 NIST FPIs. 

Table 5.1 summarizes the economic parameters derived from year-30 FPIs for 

natural gas and electricity, which are essential for calculating the percent increase in SIR. 

For natural gas, with a 3% real discount rate, the constant term based on the year-30 present 

value index, PV30, is 0.0223, while the time-varying term, derived from the 0.33% 

escalation rate, is 0.974. These terms are summed over x years beyond the 30-year 

threshold. For electricity, the constant term is slightly lower at 0.0213, and the time-varying 

term, based on the −0.45% escalation rate, is 0.967, reflecting the projected decline in 

electricity prices. These differences highlight the varying impacts of fuel types on long-

term SIR calculations. 

Table 5.1. Summary of economic parameters relevant for sensitivity analysis based on 2023 NIST FPIs 

Parameter Term 
Natural 

gas 

Electricit

y 

Real discount rate d 3% 3% 

Fuel price index for year 30 FPI30 0.882 0.963 

Present value index for year 30 PV30 0.363 0.397 

Uniform present value for year 30 UPV30 16.268 18.605 

Constant term PV30 /UPV30 0.0223 0.0213 

Year 26–30 average escalation rate ē26-30 0.33% −0.45% 

Time-varying term (to be summed over 

x years) 
(1 + ē26-30)/(1 + d) 0.974 0.967 
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Figure 5.3 illustrates the percent increase in SIR as a function of increasing measure 

lifetimes, calculated using Equation (3) and year-30 SIRs. Extending the measure life from 

30 to 40 years for natural gas results in a 20% increase in SIR. Beyond 40 years, the percent 

increase in SIR grows at a diminishing rate: 

• 35% for a 50-year lifetime, 

• 47% for a 60-year lifetime, 

• 56% for a 70-year lifetime, 

• 64% for an 80-year lifetime, 

• 69% for a 90-year lifetime, and 

• 74% for a 100-year lifetime. 

The results demonstrate that longer lifetimes significantly enhance the SIR, but the 

incremental benefits decrease as the lifetime extends. This reflects the compounding effect 

of discounted future savings, which diminishes over time. For electricity, the percent 

increases in SIR are lower than those for natural gas, consistent with the negative escalation 

rate and declining FPIs in the extrapolated period. 

This analysis highlights the importance of considering both the fuel type and the 

length of the measure lifetime in economic evaluations. Given the high uncertainty in long-

term projections, it also underscores the need for sensitivity analyses to test the robustness 

of these results under varying escalation and discount rate assumptions. 
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Figure 5.3. Analysis for extending measure life beyond 30 years based on 2023 NIST FPIs. 

The bold black line represents the percent increase in SIR (right y-axis). Colored 

lines represent the minimum year-30 SIRs necessary to achieve 1.0 SIR (left y-axis) if 

measure life is increased beyond 30 years in 10-year increments up to 100 years: red 

represents an increase from 30 to 40 years, green represents an increase from 30 to 50 

years, purple represents an increase from 30 to 60 years, and so on. 

The minimum year-30 SIR required to achieve 1.0 SIR by the end of the measure 

life is 0.84 if the measure life is increased to 40 years, 0.74 if the measure life is increased 

to 50 years, and so on. Measures with year-30 SIRs below 0.575 do not benefit even if the 

measure life is increased to 100 years. 

Likewise, for electricity, growth in the percent increase in SIR diminishes as 

measure life is increased beyond 30 years. The percent increase in SIR is 18% if measure 

life is increased from 30 to 40 years, 31% if measure life is increased from 30 to 50 years, 
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40% if measure life is increased from 30 to 60 years, and so on up to a maximum of only 

57% if measure life is further increased up to 100 years. The minimum year-30 SIR to 

achieve 1.0 SIR by the end of the measure life is 0.85 if the measure life is increased to 40 

years, 0.765 if the measure life is increased to 50 years, and so on. Measures with year-30 

SIRs below 0.64 do not benefit even if the measure life is increased to 100 years. 

Example 2: Using 2022 NIST FPIs 

Figure 5.4 presents the fuel price indices (FPIs) for natural gas and electricity published in 

the 2022 NIST energy price indices and discount factors for life-cycle cost analysis. Unlike 

the 2023 FPIs, which showed more extreme projections due to higher average escalation 

rates for years 26–30, the 2022 FPIs reflect more moderate trends. Specifically, the average 

escalation rates for years 26–30 are 0.13% for natural gas and −0.22% for electricity. These 

more conservative rates result in extrapolated FPIs for years 31–100 less extreme than 

those derived from 2023 data, leading to more stable long-term cost-effectiveness 

evaluations. 

 
Figure 5.4. Estimated FPIs beyond 30 years based on 2022 NIST FPIs. 

Table 5.2  lists the constant and time-varying terms used to calculate the percent 

increase in SIR for natural gas and electricity based on the 2022 FPIs. For natural gas, the 

constant term derived from the present value index, PV30, is 0.0218, while the time-varying 

term, based on the 0.13% escalation rate, is 0.972. For electricity, the constant term is 

slightly lower at 0.0207, while the time-varying term, reflecting the −0.22% escalation rate, 
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is 0.969. These terms demonstrate the relative stability of long-term price projections in 

the 2022 dataset. 

Table 5.2. Summary of economic parameters relevant for sensitivity analysis based on 2022 NIST FPIs 

Parameter Term Natural gas Electricity 

Real discount rate d 3% 3% 

Fuel price index for year 30 FPI30 0.981 0.969 

Present value for year 30 PV30 0.404 0.399 

Uniform present value for year 30 UPV30 18.510 19.292 

Constant term PV30 /UPV30 0.0218 0.0207 

Year 26–30 average escalation rate ē26-30 0.13% −0.22% 

Time-varying term (to be summed 

over x years) 

(1 + ē26-30)/(1 + d) 0.972 0.969 

 

As shown in Figure 5.5, the percent increase in SIR when extending measure 

lifetimes grows at a diminishing rate, consistent with the compounding effect of discounted 

future savings. For natural gas, extending the measure lifetime from 30 to 40 years 

increases the SIR by 18.7%, while extending it to 50 years results in a 32.4% increase. 

Beyond 50 years, the incremental growth in SIR slows significantly, reaching a maximum 

increase of 65.6% at 100 years. Similarly, for electricity, extending the measure lifetime 

from 30 to 40 years increases the SIR by 17.5%, while extending it to 50 years yields a 

30.9% increase, with a maximum increase of 57.5% at 100 years. 

The analysis also reveals minimum year-30 SIR thresholds for measures to benefit 

from lifetime extensions. For natural gas savings, measures must have year-30 SIRs of at 

least 0.84 to benefit from a 40-year lifetime and 0.75 for a 50-year lifetime. Measures with 

year-30 SIRs below 0.6 do not see any benefit, even with lifetimes extended to 100 years. 

For electricity savings, measures require year-30 SIRs of at least 0.85 to benefit from a 40-

year lifetime and 0.77 for a 50-year lifetime, with a minimum threshold of 0.635 for 100-

year lifetimes. 
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Figure 5.5. Analysis for extending measure life beyond 30 years based on 2022 NIST FPIs. 

The bold black line represents the percent increase in SIR (right y-axis). Colored 

lines represent the minimum year-30 SIRs necessary to achieve 1.0 SIR (left y-axis) if 

measure life is increased beyond 30 years in 10-year increments up to 100 years: red 

represents an increase from 30 to 40 years, green represents an increase from 30 to 50 

years, purple represents an increase from 30 to 60 years, and so on. 

5.3.2 Uncertainty Analysis for Extended Lifetime Projections 

Extending measure lifetimes beyond the standard 30-year period introduces 

significant uncertainties in economic evaluations of ECMs. These uncertainties arise 

primarily from the extrapolation of FPIs and the application of discount rates over extended 

periods, both of which are subject to substantial variability. 
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Fuel price indices for years beyond the 30-year horizon are derived through 

extrapolation methods, which rely on average escalation rates observed in years 26–30. 

However, these methods assume that recent trends will persist, ignoring potential market 

disruptions, technological advances, or policy changes. For example, unforeseen shifts in 

global energy markets or adopting renewable energy technologies could drastically alter 

long-term fuel price trajectories. 

Discount rates used to calculate present value indices are typically held constant 

over the analysis period. However, real-world discount rates may fluctuate due to changes 

in inflation, economic growth, or monetary policy [264]. Such variability can significantly 

affect the present value of long-term savings, particularly for lifetimes extending to 50 or 

100 years. 

Some ECMs' effectiveness may degrade over time, reducing their energy-saving 

potential. While this degradation is accounted for in some evaluations, uncertainties in 

degradation rates for newer or less-studied ECMs add complexity to long-term 

assessments. Also, changes in energy policies, subsidies, or program guidelines could 

influence the economic viability of long-lived ECMs. For example, introducing carbon 

pricing or renewable energy mandates may alter cost-benefit dynamics. 

The compounded effects of these uncertainties can lead to either overestimation or 

underestimation of ECM cost-effectiveness. Overestimation may result in selecting 

measures that fail to deliver expected savings, while underestimation could exclude 

measures with significant long-term benefits. This has critical implications for program 

administrators tasked with optimizing resource allocation under WAP. 

Quantifying and Mitigating Uncertainty 

One approach to quantifying uncertainty is through scenario analysis, where 

multiple projections of FPIs and discount rates are tested to evaluate their impact on 

savings-to-investment ratios (SIRs). For instance, optimistic, baseline, and pessimistic 
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scenarios can be developed to reflect varying assumptions about future energy prices and 

economic conditions [265]. 

Monte Carlo methods provide a probabilistic framework for uncertainty analysis 

[266]. This approach generates a range of possible outcomes by sampling from 

distributions of fuel price escalation rates, discount rates, and other variables, offering 

insights into the likelihood of achieving specific SIR thresholds. Also, sensitivity analysis, 

as discussed earlier in this chapter, evaluates how variations in key parameters affect SIR 

calculations. This approach is beneficial for identifying parameters that exert the most 

significant influence on results, allowing for targeted risk mitigation strategies. 

A way to mitigate uncertainty is to incorporate dynamic discount rates that adjust 

to changing economic conditions. This can provide more realistic estimates of long-term 

present value indices. Also, frequent updates to extrapolation methods for FPIs, 

incorporating the latest market data and trends, can improve the reliability of long-term 

projections. For measures with lifetimes extending well beyond 30 years, incorporating 

residual value in economic assessments can partially offset uncertainties in long-term 

projections. 

5.3.3 Policy and Broader Implications for Energy Equity and Sustainability 

Analyzing measures with extended lifetimes has profound implications for energy 

efficiency programs seeking to optimize economic, social, and environmental outcomes. 

Incorporating longer measure lifetimes into program frameworks requires revisiting 

established methodologies and policies to ensure that the full value of durable measures is 

accurately accounted for in cost-effectiveness evaluations. This shift can improve resource 

allocation, enhance energy equity, and contribute to long-term sustainability goals. 

A key policy implication is adapting cost-effectiveness criteria for longer-lived 

energy conservation measures (ECMs). Traditional approaches are often limited to short-

term future projectable periods (for example, a 30-year horizon) and fail to capture the 

cumulative savings and benefits of measures that remain effective for long-term periods 
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(for example, 50 years or longer). Adjustments such as incorporating residual value into 

cost-benefit analyses or dynamic discount rates reflecting economic variability over 

extended periods are necessary for more accurate evaluations. Additionally, aligning 

program guidelines with broader energy policies, such as federal or regional sustainability 

targets, ensures consistency in assessing the long-term benefits of ECMs. 

Economic projections also play a critical role in assessing measures with extended 

lifetimes. Current methods for extrapolating fuel price indices and escalation rates beyond 

modeled periods introduce decision-making uncertainties. Enhancing the accuracy and 

reliability of these projections through collaboration with research institutions and energy 

forecasting agencies can provide a more robust foundation for evaluating long-term cost-

effectiveness. This is particularly important for durable measures whose benefits depend 

on stable and realistic economic assumptions over decades. 

Beyond economic considerations, integrating long-lived ECMs into energy 

efficiency programs carries significant implications for energy equity. Durable measures 

provide sustained energy cost savings, improved indoor comfort, and healthier living 

environments, which are particularly impactful for underserved or low-income 

communities. However, higher upfront costs and extended payback periods may limit these 

measures' accessibility. Addressing this disparity requires targeted program designs, such 

as grants or financing mechanisms, to ensure equitable access to the long-term benefits of 

durable ECMs. 

From a sustainability perspective, measures with extended lifetimes contribute to 

reducing overall energy consumption and greenhouse gas emissions, aligning with global 

decarbonization goals. These measures also support community resilience by mitigating 

exposure to energy price volatility and reducing dependence on fossil fuels. Energy 

efficiency programs can achieve a more significant and sustained environmental impact by 

prioritizing investments in durable, high-impact measures. 
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To maximize the potential of long-lived ECMs, energy efficiency programs must 

adopt a holistic approach considering their economic and technical feasibility and broader 

societal and environmental benefits. This includes refining evaluation methodologies, 

addressing barriers to access, and fostering collaborations between stakeholders to create 

equitable and sustainable programs. Such efforts will ensure that the benefits of energy 

efficiency are distributed fairly while advancing long-term goals of environmental 

stewardship and social equity. 

5.4 Chapter Summary 

This study has explored the economic implications of extending ECM lifetimes 

beyond the conventional 30-year threshold often employed in energy efficiency programs. 

By examining methodologies for projecting fuel price indices (FPIs), applying discount 

rates, and conducting sensitivity analyses, the chapter provides a comprehensive 

framework for evaluating the long-term viability of ECMs. Key findings highlight the 

potential benefits and challenges of extending measure lifetimes, emphasizing the need for 

refined economic evaluation criteria and robust analytical approaches. 

The historical context of default measure lifetime values reveals a reliance on 

short-term projections, which, while practical, may undervalue durable measures that 

deliver energy savings over several decades. Using extrapolated FPIs to extend projections 

beyond 30 years demonstrates the importance of balancing potential economic benefits 

against the inherent uncertainties of long-term forecasting. Sensitivity analyses confirm 

that while extending lifetimes significantly increases savings-to-investment ratios (SIRs), 

the marginal benefits diminish as lifetimes extend further, underscoring the compounding 

effects of discounting future savings. 

This analysis also highlights the nuanced trade-offs between short-lived and long-

lived ECMs. While short-lived measures offer immediate, accessible savings, long-lived 

ECMs provide sustained benefits that align with broader energy equity and sustainability 

goals. Addressing fuel prices and discount rates and measuring degradation uncertainties 
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is critical to ensuring that economic evaluations remain reliable and actionable over 

extended periods. 

Moreover, the study highlights the broader implications of integrating long-lived 

ECMs into energy efficiency programs. Beyond economic metrics, such measures 

contribute to social equity by reducing energy burdens for underserved communities and 

advance sustainability by mitigating greenhouse gas emissions and enhancing resilience. 

By adopting policies and methodologies that account for the entire lifecycle benefits of 

ECMs, energy efficiency programs can more effectively achieve their objectives of 

reducing energy consumption, promoting equity, and supporting global decarbonization 

efforts. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions for Each Chapter 

This section provides a detailed summary of the outcomes of the research objectives 

pursued in this study toward developing a multicriteria framework for energy audit 

software and evaluation methodologies for energy conservation measures in low-income 

energy efficiency programs. The outcomes of each research objective are highlighted 

below: 

6.1.1 Developing a Multicriteria Framework For Residential Energy Audits that 

Addresses the Specific Needs and Complexities of Low-Income Households 

Chapter 2 successfully addressed the above objective by presenting a 

comprehensive framework tailored to the unique needs of low-income households in 

residential energy audits. The framework integrates over 50 carefully curated factors 

organized under 14 critical criteria, encompassing energy and non-energy considerations. 

It emphasizes essential aspects such as accuracy, scalability, sustainability, cost, and user-

friendliness while addressing health, safety, and the socio-economic impacts of energy 

efficiency. 

The proposed framework aligns technical functionalities with practical 

requirements, enabling energy auditors, software developers, and program managers to 

evaluate, improve, or select the most suitable energy audit software for low-income 

households. This systematic approach addresses the complexities of diverse building types 

and user behaviors and highlights the non-energy benefits often overlooked, such as health, 

safety, and indoor air quality improvements. 

The framework lays the groundwork for more equitable and effective energy 

efficiency interventions by bridging gaps in existing methodologies and offering a 

structured, holistic assessment model. It will ultimately contribute to reduced energy costs, 

improved living standards for vulnerable populations, and progress toward global net-zero 

emission targets. 
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6.1.2 Demonstrating how the Framework Works with Existing Energy Audit Software: 

A Comparative Analysis Of Three Software 

This chapter demonstrated the applicability of the proposed multi-criteria 

framework by evaluating three energy audit software tools – REM/RATE, Weatherization 

Assistant (WA), and TREAT – against criteria particularly relevant to low-income 

households. The comparative analysis revealed that while each software has distinct 

strengths and limitations, the framework effectively highlighted their suitability for 

specific contexts and identified areas for improvement. 

REM/RATE exhibited substantial compliance with established energy standards 

and the inclusion of renewable energy modeling capabilities, making it a good choice for 

sustainability-focused audits. However, its limited health and safety features and scalability 

options restrict its applicability for broader, low-income household programs. WA excelled 

in health and safety considerations and scalability, emphasizing its suitability for large-

scale applications, but its lack of renewable energy and sustainability features presents a 

significant limitation. TREAT provided a balanced user experience and notable scalability 

features, yet it underperformed in compliance with energy standards and renewable energy 

integration, limiting its effectiveness for holistic energy audits. 

The framework proved robust in capturing quantitative and qualitative performance 

metrics, enabling a comprehensive assessment of each tool. The framework facilitated a 

nuanced understanding of each tool's capabilities and limitations by organizing the 

evaluation into software-focused, user-focused, and household-focused criteria. 

Additionally, it underscored the need for software enhancements, including improved 

health and safety features, sustainability modules, and better integration with renewable 

energy technologies. 

This evaluation validated the framework’s effectiveness and provided actionable 

insights for developers, policymakers, and energy program administrators. By adopting a 

structured approach to assessing energy audit software, stakeholders can make informed 

decisions that align with the specific needs of low-income households, ultimately 

advancing energy efficiency and improving living conditions for vulnerable populations. 
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6.1.3 Establishing a systematic and Repeatable Methodology for Assessing the Lifetime 

of Energy Conservation Measures 

This chapter establishes a systematic and repeatable methodology for assessing the 

lifetimes of Energy Conservation Measures (ECMs), ensuring applicability across diverse 

measure types with a focus on low-income households. The study critically reviewed and 

compared methodologies – ranging from survival analysis and manufacturer data to field 

surveys, accelerated life testing, data-driven modeling, and expert judgment – highlighting 

their strengths, limitations, and applications. It also incorporates a detailed exploration of 

economic analyses for measures with extended lifetimes, addressing the unique challenges 

and opportunities associated with ECMs expected to last beyond conventional study 

periods. 

The analysis adapts established frameworks for ECMs with lifetimes exceeding 30 

years, such as the Federal Energy Management Program (FEMP) lifecycle costing rules. It 

integrates sensitivity analyses to account for uncertainties in fuel price projections. The 

results underscore the importance of extending study periods for long-lived ECMs while 

balancing these benefits with the inherent uncertainties of extrapolated economic 

parameters. The findings demonstrate that extending the analysis period increases cost-

effectiveness (as measured by the Savings-to-Investment Ratio, or SIR), though this effect 

diminishes with longer durations. 

The chapter also emphasizes integrating multiple lifetime estimation approaches, 

such as using statistical techniques like the Weibull distribution, to derive representative 

lifetime values that reflect real-world variability. Additionally, it underscores the critical 

role of environmental factors, maintenance practices, and user behavior in influencing 

measure persistence and savings persistence. These insights are pivotal for stakeholders 

prioritizing ECMs that deliver sustained benefits, particularly in programs designed for 

low-income households. 

This chapter provides actionable tools for optimizing ECM selection and 

implementation by combining robust lifetime estimation methodologies with a 

comprehensive economic analysis framework. The outcomes support informed decision-

making, ensuring that resources are directed toward measures with the most significant 
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potential to maximize energy savings, reduce costs, and improve the quality of life for 

underserved populations. 

6.2 Impact and Significance of this Thesis 

The global push for energy efficiency and sustainability has underscored the critical 

importance of targeted interventions in the residential building sector, particularly for low-

income households. This thesis contributes to advancing the field of residential energy 

audits by addressing the multifaceted challenges of energy conservation within this 

demographic. By developing a comprehensive framework and robust methodologies, this 

work provides practical tools and actionable insights to enhance energy efficiency, improve 

living conditions, and reduce energy costs for vulnerable populations. The broader 

significance of this thesis is detailed below: 

6.2.1 Development of a Comprehensive Energy Audit Framework 

This research introduces a novel, multi-criteria framework tailored to the unique 

needs of low-income households. This framework is the most extensive and comprehensive 

outline relevant to a broad spectrum of energy audit stakeholders, including developers, 

users, administrators, and beneficiaries. The framework goes beyond conventional energy 

audit practices by integrating energy and non-energy considerations, such as health, safety, 

and socio-economic impacts. Its holistic approach equips stakeholders with a structured, 

equitable methodology for developing, evaluating, and selecting energy audit software. By 

bridging gaps in existing practices, the framework lays the foundation for more effective 

and inclusive energy conservation programs, ultimately advancing energy equity. 

6.2.2 Demonstration of Framework Applicability with Energy Audit Software 

To demonstrate and prove the practicality of the framework, the thesis rigorously 

applies the proposed framework to existing energy audit software tools – REM/RATE, 

Weatherization Assistant, and TREAT. This comparative analysis highlights their relative 

strengths, limitations, and alignment with the specific requirements of low-income 

households. The findings provide actionable recommendations for software developers to 



 

122 
 

enhance user-friendliness, scalability, and the integration of sustainability features. 

Furthermore, the framework’s ability to identify gaps and opportunities underscores its 

potential for driving innovation in energy audit software, facilitating widespread adoption 

and impact. 

6.2.3 Establishment of Methodology for Assessing Energy Conservation Measures 

(ECMs) 

The research pioneers a systematic and repeatable methodology for evaluating the 

lifetimes of Energy Conservation Measures (ECMs). The methodology ensures accurate, 

context-specific lifetime estimates by employing diverse approaches – including survival 

analysis, manufacturer data, field testing, and data-driven modeling. This enables more 

precise lifecycle cost analyses and informed decision-making for program administrators. 

Additionally, the economic analysis of ECMs with lifetimes exceeding 30 years addresses 

a critical knowledge gap, providing a framework for evaluating long-term energy 

efficiency investments that guarantee a positive SIR. 

6.2.4 Contributions to Energy Equity and Sustainability 

This thesis makes significant strides in addressing energy poverty by tailoring 

solutions to the specific needs of low-income households. The proposed solutions empower 

communities to access energy-saving technologies and programs at scale by prioritizing 

scalability, cost-effectiveness, and implementation time. The work also advances 

sustainability efforts by promoting the adoption of durable ECMs and enhancing the 

resilience of residential energy systems. These contributions align with global 

decarbonization goals, aiding in reducing greenhouse gas emissions and mitigating climate 

change impacts. 

6.2.5 Broader Implications for Policy and Practice 

The findings and methodologies presented in this thesis have implications that 

extend beyond academia. Policymakers can leverage the insights to design targeted 

programs that address energy inequities, while software developers and energy auditors 
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can refine tools and processes to maximize their effectiveness. Furthermore, the 

comprehensive approach to ECM lifetime assessment offers a replicable model for 

evaluating energy efficiency programs' economic and environmental benefits across 

diverse contexts. 

6.3 Limitations of the Study 

This thesis addresses significant challenges in residential energy auditing and 

energy conservation measure (ECM) evaluation; however, several limitations must be 

acknowledged, particularly regarding the scope, methodology, and data dependencies. 

A key limitation lies in the complexity and subjectivity of the multi-criteria 

framework for evaluating energy audit software. The framework incorporates quantitative 

and qualitative criteria to provide a comprehensive assessment, but assigning weights to 

these criteria is inherently subjective. Stakeholders may prioritize criteria differently based 

on their goals and perspectives, leading to outcome variability. While unavoidable in multi-

criteria decision-making, this subjectivity highlights a potential challenge in achieving 

consistency across applications and contexts. 

Another significant limitation pertains to the reliability of ECM lifetime estimation, 

which depends on data availability and quality. The methodologies employed in this study 

rely on various sources, including manufacturer data, field testing, statistical models, and 

expert judgment. However, inconsistencies in these data sources or the lack of historical 

performance data for newer ECM technologies can compromise the accuracy of lifetime 

estimates. For example, field surveys may capture real-world usage patterns but often 

require extensive resources and execution time. In contrast, accelerated life testing may 

yield results quickly but does not always replicate real-world conditions. The reliance on 

data-driven methods also makes the analysis sensitive to errors or biases in the input data, 

which could affect the overall conclusions. 

The scope of validation for the framework and ECM lifetime estimation 

methodologies also represents a limitation. The framework was applied to three specific 

energy audit software tools – REM/RATE, Weatherization Assistant, and TREAT. 

Although widely recognized, these tools do not encompass the full range of functionalities 
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or scenarios relevant to energy audits in different contexts. Similarly, the ECM lifetime 

estimation methodologies were applied to a limited number of scenarios informed by 

available data. This limited scope may not reflect the diverse conditions encountered across 

various building types, climate zones, and operational practices. As such, the findings may 

not fully generalize to all energy audit applications or ECM categories. 

Economic analyses of ECMs with lifetimes exceeding 30 years further highlight 

the limitations of long-term projections. Evaluating the cost-effectiveness of such ECMs 

relied on extrapolated fuel price projections, which inherently become less reliable as the 

analysis period extends. Although sensitivity analyses accounted for uncertainties, the 

variability of factors such as energy prices, inflation rates, and discount rates over long 

periods introduces additional complexity. This uncertainty limits the precision of the 

economic assessments and underscores the challenges of projecting cost-effectiveness for 

long-lived ECMs. 

Finally, this study does not explicitly address behavioral and institutional factors 

influencing the adoption and implementation of energy audits and ECMs. While the 

research focuses on the technical and economic dimensions, factors such as user behavior, 

programmatic challenges, and institutional constraints can significantly affect the 

scalability and success of energy efficiency measures. Although beyond the scope of this 

research, these non-technical barriers remain critical to understanding the practical 

challenges of achieving widespread adoption. 

6.4 Recommendation for Future Work 

This thesis has contributed significantly to residential energy auditing by 

developing a multi-criteria framework, demonstrating its application with existing energy 

audit software, and establishing a systematic methodology for assessing ECM lifetimes. 

However, several areas for future research and development can build upon this study's 

findings to further advance energy efficiency and equity in low-income households. 
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6.4.1 Enhancing Framework Applicability and Objectivity 

The subjectivity associated with assigning weights to the criteria within the multi-

criteria framework presents an opportunity for future work. Research efforts could focus 

on developing standardized or algorithmic approaches for determining criteria weights, 

potentially incorporating participatory decision-making techniques or machine learning 

tools. Such advancements could reduce bias and enhance the framework's objectivity, 

replicability, and widespread adoption. 

Additionally, the framework should be validated across a broader range of energy 

audit software tools and in diverse geographic and socio-economic contexts. Testing the 

framework in international and regional settings would provide insights into its adaptability 

and limitations, ensuring its robustness for varying household types, climates, and energy 

policies. 

6.4.2 Expanding ECM Lifetime Data Sources and Models 

While this study integrated multiple approaches to assess ECM lifetimes, data 

availability and quality limitations remain a barrier. Future research could explore the 

development of standardized data repositories that aggregate ECM performance data 

across various regions and conditions. This would enhance the reliability of lifetime 

estimates and reduce dependence on manufacturer data or expert judgment. 

Moreover, there is potential to improve statistical and machine learning models to 

capture variability in ECM performance under real-world conditions. These models could 

incorporate dynamic environmental factors, usage patterns, and technological 

advancements, providing more nuanced lifetime estimates. 

6.4.3 Addressing Uncertainty in Long-Term Economic Analysis 

The economic evaluation of ECMs with lifetimes exceeding 30 years remains 

inherently uncertain due to extrapolated parameters such as energy prices and inflation 

rates. Future research should aim to refine long-term economic modeling techniques by 

incorporating probabilistic approaches or scenario-based analyses that can better capture 
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uncertainties over extended periods. These advancements would improve the precision of 

cost-effectiveness assessments for long-lived ECMs. 

6.4.4 Integrating Behavioral and Institutional Factors 

The adoption of energy audit software and ECMs is influenced by technical and 

economic considerations and behavioral and institutional factors such as household energy-

use habits, reluctance to adopt new measures, skepticism about long-term benefits, 

restrictive eligibility criteria, and limited outreach efforts. Future work could investigate 

how user behavior, programmatic constraints such as limited funding or insufficient auditor 

training, and institutional barriers affect the implementation and scalability of energy 

audits. Such research would provide valuable insights into how energy efficiency programs 

can be designed to maximize participation and impact in low-income households. 

6.4.5 Innovation in Energy Audit Software Design 

There is a need to encourage innovation in energy audit software to address 

identified gaps in current tools. Future efforts could focus on developing software with 

enhanced user interfaces, better health and safety features integration, and the ability to 

analyze renewable energy systems. Additionally, exploring how artificial intelligence (AI) 

and machine learning could streamline data acquisition, input, and analysis processes 

would improve software efficiency and accuracy. 

6.4.6 Bridging the Gap Between Research and Practice 

Demonstrating the practical application of findings in real-world settings is critical 

for scaling energy efficiency programs. Future studies could focus on pilot projects 

implementing the proposed framework and methodologies in low-income communities, 

assessing their effectiveness, and identifying areas for refinement. Strong collaboration 

between researchers, policymakers, and industry stakeholders will be essential to ensure 

the practical impact of these efforts. 
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6.4.7 Addressing Energy Equity Holistically 

Finally, addressing energy equity requires a broader perspective beyond technical 

solutions. Future work should consider the socio-economic dimensions of energy 

efficiency programs, including how they intersect with housing quality, access to 

technology, and community engagement. This holistic approach will ensure that the 

benefits of energy conservation reach the most vulnerable populations and contribute to 

long-term energy security and sustainability. 
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APPENDICES 

APPENDIX A: SUPPLEMENTARY DATA FOR CHAPTER 4 

 

UTILIZING MEASURE LIFETIME DATA SOURCES 
 

Obtaining Reference Service Life from an Environmental Product Declaration Document 

To find the RSL of a product from an EPD, one may use the following steps: 

Step 1: Access https://www.environdec.com/library and locate the EPD library at 

the top right of the menu bar as shown in Figure A-1. 

Step 2: To obtain the EPD document of a desired product or product type, type a 

keyword and/or select additional search criteria for Product Category (such as chemical 

products, construction products, infrastructure & building, etc.), PCR (which provides a 

finer breakdown of the options in the Product Category field), Geographical scope (to 

search by country, region, or continent), and/or Validity (to select a date or period when 

the EPD documents ought to be valid). The search results list the most recent EPD 

documents available in the library that match the specified search criteria, as shown in 

Figure A-1.  

Step 3: Select a desired match to view the product information summary page, as 

shown in Figure A-2. Locate the EPD document provided on this page. The estimated 

service life of the product can be found in the EPD document, as shown in Figure A-3. 
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Figure A-1. Representative example with completed EPD search/selection fields showing results. 
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Figure A-2. Product information summary page from an EPD search result. 
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Figure A-3. Screenshot of a typical EPD document showing the product's estimated service life 

(highlighted).3 
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Obtaining HVAC Service Life from the ASHRAE Database 

ASHRAE maintains a public database that provides current information on the 

service lives and maintenance costs of all major pieces of HVAC equipment. Users 

may access the database by following the following steps: 

Step 1: Access the HVAC Service Life Database at 

http://weblegacy.ashrae.org/publicdatabase/service_life.asp (Figure A-4). 

 
Figure A-4. Screenshot of the ASHRAE HVAC Service Life Database. 

Step 2: Use the Service Life Data Query (Figure A-5) to customize your search from the 

database by filtering equipment by system type (air distribution, cooling, heat rejection, 

cooling pump, heating, heating pump, control, miscellaneous), region, state, building 

 
3 For the product information summary page, visit https://www.environdec.com/library/epd9895. For the EPD 
document, visit https://api.environdec.com/api/v1/EPDLibrary/Files/cec394d0-0901-4ded-5767-
08db8f4b80b8/Data.  
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function, size of building, height of building or number of stories, Building Owner and 

Managers Association (BOMA) classification, and location. 

 

 
Figure A-5. Screenshot of Service Life Data Query. 

The database allows users to search for equipment service life data by building type or 

function. This can be found by selecting Function to expand the field and then scrolling 

through the options to select the desired building type or function, as shown in Figure A-

6. However, an obvious limitation of this database is that it is more focused on commercial 

buildings and has minimal residential building types. Figure A-7 shows a sample table of 
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results for filtering the database by building function (multifamily residential) and system 

type (air distribution equipment).  

 
Figure A-6. ASHRAE HVAC Service Life Database showing building types. 

 
Figure A-7. Sample table of results for filtering the database by building function (multifamily residential) 

and system type (air distribution equipment). 
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APPENDIX B. DERIVATION OF FORMULA FOR ESCALATION RATES BEYOND 30 

YEARS 

Defining Economic Parameters 

Escalation Rate,  �% = �P�Q �RST�%
�P�Q �RST�%U@

− 1 

Fuel Price Index,  ���% = �P�Q �RST�%
�P�Q �RST��

⇒  ���� = 1 

Present Value,  �I% = ���%
�1 + L$% ,  where L = discount rate 

Uniform Present Value,  J�I% = b �IF
%

FH@
= b ���F

�1 + L$F

%

FH@
 

Savings to Investment Ratio,  e�f = g&&PhQ i&�Rjk lmno ehpS&jn ∗ J�IqArstuA vFwA
x�hnPR� lmno  

 

Expressing yz{|}�~ as a Function of ����-|} and ~ 

���% = �P�Q �RST�%
�P�Q �RST��

= �P�Q �RST�%
�P�Q �RST�%U@

∗ �P�Q �RST�%U@
�P�Q �RST�%U!

∗ … ∗ �P�Q �RST�@
�P�Q �RST��

= �1 + �%$ ∗ �1 + �%U@$ ∗ … ∗ �1 + �@$ = ��1 + �F$
%

FH@
 

Assuming �% = ∑ �F��FH!"
5 or �̅!"-�� for year & = 31 and beyond,   

������� = � �1 + �F$
����

FH@
= ��1 + �F$

��

FH@
 ∗ ��1 + ��@$ ∗ … ∗ �1 + �����$�

= ����� ∗ �1 + �̅!"-��$� 
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Expressing Percent Increase in SIR as a Function of ����-|}  and ~ 

For measure life = 30 years,  e�f�� = g&&PhQ i&�Rjk lmno ehpS&jn
x�hnPR� lmno ∗ J�I�� 

For measure life = 30 + . years,  e�f����

= g&&PhQ i&�Rjk lmno ehpS&jn
x�hnPR� lmno ∗ J�I���� 

⇒  % �&TR�hn� S& e�f = e�f���� − e�f��
e�f��

= J�I���� − J�I��
J�I��

=
∑ ���F�1 + L$F

����FH@ − ∑ ���F�1 + L$F
��FH@

J�I��
=

∑ ���F�1 + L$F
����FH�@

J�I��

=
∑ ����� ∗ �1 + �̅!"-��$FU��

�1 + L$�� ∗ �1 + L$FU��
����FH�@

J�I��
=

∑ �I�� ∗ �1 + �̅!"-��$FU��
�1 + L$FU��

����FH�@
J�I��

= �I��
J�I��

∗ b �1 + �̅!"-��
1 + L �

F�

FH@
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